mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[core] parallel loading of shards (#12028)
* checking. * checking * checking * up * up * up * Apply suggestions from code review Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com> * up * up * fix * review feedback. --------- Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
This commit is contained in:
@@ -62,7 +62,7 @@ logger = logging.get_logger(__name__)
|
||||
if is_accelerate_available():
|
||||
from accelerate import dispatch_model, init_empty_weights
|
||||
|
||||
from ..models.modeling_utils import load_model_dict_into_meta
|
||||
from ..models.model_loading_utils import load_model_dict_into_meta
|
||||
|
||||
if is_torch_version(">=", "1.9.0") and is_accelerate_available():
|
||||
_LOW_CPU_MEM_USAGE_DEFAULT = True
|
||||
|
||||
@@ -55,7 +55,7 @@ if is_transformers_available():
|
||||
if is_accelerate_available():
|
||||
from accelerate import init_empty_weights
|
||||
|
||||
from ..models.modeling_utils import load_model_dict_into_meta
|
||||
from ..models.model_loading_utils import load_model_dict_into_meta
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
@@ -17,7 +17,8 @@ from ..models.embeddings import (
|
||||
ImageProjection,
|
||||
MultiIPAdapterImageProjection,
|
||||
)
|
||||
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
|
||||
from ..models.model_loading_utils import load_model_dict_into_meta
|
||||
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
|
||||
from ..utils import is_accelerate_available, is_torch_version, logging
|
||||
from ..utils.torch_utils import empty_device_cache
|
||||
|
||||
|
||||
@@ -16,7 +16,8 @@ from typing import Dict
|
||||
|
||||
from ..models.attention_processor import SD3IPAdapterJointAttnProcessor2_0
|
||||
from ..models.embeddings import IPAdapterTimeImageProjection
|
||||
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
|
||||
from ..models.model_loading_utils import load_model_dict_into_meta
|
||||
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
|
||||
from ..utils import is_accelerate_available, is_torch_version, logging
|
||||
from ..utils.torch_utils import empty_device_cache
|
||||
|
||||
|
||||
@@ -30,7 +30,8 @@ from ..models.embeddings import (
|
||||
IPAdapterPlusImageProjection,
|
||||
MultiIPAdapterImageProjection,
|
||||
)
|
||||
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta, load_state_dict
|
||||
from ..models.model_loading_utils import load_model_dict_into_meta
|
||||
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_state_dict
|
||||
from ..utils import (
|
||||
USE_PEFT_BACKEND,
|
||||
_get_model_file,
|
||||
|
||||
@@ -14,12 +14,14 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import functools
|
||||
import importlib
|
||||
import inspect
|
||||
import math
|
||||
import os
|
||||
from array import array
|
||||
from collections import OrderedDict, defaultdict
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Union
|
||||
from zipfile import is_zipfile
|
||||
@@ -31,6 +33,7 @@ from huggingface_hub.utils import EntryNotFoundError
|
||||
|
||||
from ..quantizers import DiffusersQuantizer
|
||||
from ..utils import (
|
||||
DEFAULT_HF_PARALLEL_LOADING_WORKERS,
|
||||
GGUF_FILE_EXTENSION,
|
||||
SAFE_WEIGHTS_INDEX_NAME,
|
||||
SAFETENSORS_FILE_EXTENSION,
|
||||
@@ -310,6 +313,161 @@ def load_model_dict_into_meta(
|
||||
return offload_index, state_dict_index
|
||||
|
||||
|
||||
def check_support_param_buffer_assignment(model_to_load, state_dict, start_prefix=""):
|
||||
"""
|
||||
Checks if `model_to_load` supports param buffer assignment (such as when loading in empty weights) by first
|
||||
checking if the model explicitly disables it, then by ensuring that the state dict keys are a subset of the model's
|
||||
parameters.
|
||||
|
||||
"""
|
||||
if model_to_load.device.type == "meta":
|
||||
return False
|
||||
|
||||
if len([key for key in state_dict if key.startswith(start_prefix)]) == 0:
|
||||
return False
|
||||
|
||||
# Some models explicitly do not support param buffer assignment
|
||||
if not getattr(model_to_load, "_supports_param_buffer_assignment", True):
|
||||
logger.debug(
|
||||
f"{model_to_load.__class__.__name__} does not support param buffer assignment, loading will be slower"
|
||||
)
|
||||
return False
|
||||
|
||||
# If the model does, the incoming `state_dict` and the `model_to_load` must be the same dtype
|
||||
first_key = next(iter(model_to_load.state_dict().keys()))
|
||||
if start_prefix + first_key in state_dict:
|
||||
return state_dict[start_prefix + first_key].dtype == model_to_load.state_dict()[first_key].dtype
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def _load_shard_file(
|
||||
shard_file,
|
||||
model,
|
||||
model_state_dict,
|
||||
device_map=None,
|
||||
dtype=None,
|
||||
hf_quantizer=None,
|
||||
keep_in_fp32_modules=None,
|
||||
dduf_entries=None,
|
||||
loaded_keys=None,
|
||||
unexpected_keys=None,
|
||||
offload_index=None,
|
||||
offload_folder=None,
|
||||
state_dict_index=None,
|
||||
state_dict_folder=None,
|
||||
ignore_mismatched_sizes=False,
|
||||
low_cpu_mem_usage=False,
|
||||
):
|
||||
state_dict = load_state_dict(shard_file, dduf_entries=dduf_entries)
|
||||
mismatched_keys = _find_mismatched_keys(
|
||||
state_dict,
|
||||
model_state_dict,
|
||||
loaded_keys,
|
||||
ignore_mismatched_sizes,
|
||||
)
|
||||
error_msgs = []
|
||||
if low_cpu_mem_usage:
|
||||
offload_index, state_dict_index = load_model_dict_into_meta(
|
||||
model,
|
||||
state_dict,
|
||||
device_map=device_map,
|
||||
dtype=dtype,
|
||||
hf_quantizer=hf_quantizer,
|
||||
keep_in_fp32_modules=keep_in_fp32_modules,
|
||||
unexpected_keys=unexpected_keys,
|
||||
offload_folder=offload_folder,
|
||||
offload_index=offload_index,
|
||||
state_dict_index=state_dict_index,
|
||||
state_dict_folder=state_dict_folder,
|
||||
)
|
||||
else:
|
||||
assign_to_params_buffers = check_support_param_buffer_assignment(model, state_dict)
|
||||
|
||||
error_msgs += _load_state_dict_into_model(model, state_dict, assign_to_params_buffers)
|
||||
return offload_index, state_dict_index, mismatched_keys, error_msgs
|
||||
|
||||
|
||||
def _load_shard_files_with_threadpool(
|
||||
shard_files,
|
||||
model,
|
||||
model_state_dict,
|
||||
device_map=None,
|
||||
dtype=None,
|
||||
hf_quantizer=None,
|
||||
keep_in_fp32_modules=None,
|
||||
dduf_entries=None,
|
||||
loaded_keys=None,
|
||||
unexpected_keys=None,
|
||||
offload_index=None,
|
||||
offload_folder=None,
|
||||
state_dict_index=None,
|
||||
state_dict_folder=None,
|
||||
ignore_mismatched_sizes=False,
|
||||
low_cpu_mem_usage=False,
|
||||
):
|
||||
# Do not spawn anymore workers than you need
|
||||
num_workers = min(len(shard_files), DEFAULT_HF_PARALLEL_LOADING_WORKERS)
|
||||
|
||||
logger.info(f"Loading model weights in parallel with {num_workers} workers...")
|
||||
|
||||
error_msgs = []
|
||||
mismatched_keys = []
|
||||
|
||||
load_one = functools.partial(
|
||||
_load_shard_file,
|
||||
model=model,
|
||||
model_state_dict=model_state_dict,
|
||||
device_map=device_map,
|
||||
dtype=dtype,
|
||||
hf_quantizer=hf_quantizer,
|
||||
keep_in_fp32_modules=keep_in_fp32_modules,
|
||||
dduf_entries=dduf_entries,
|
||||
loaded_keys=loaded_keys,
|
||||
unexpected_keys=unexpected_keys,
|
||||
offload_index=offload_index,
|
||||
offload_folder=offload_folder,
|
||||
state_dict_index=state_dict_index,
|
||||
state_dict_folder=state_dict_folder,
|
||||
ignore_mismatched_sizes=ignore_mismatched_sizes,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
|
||||
with ThreadPoolExecutor(max_workers=num_workers) as executor:
|
||||
with logging.tqdm(total=len(shard_files), desc="Loading checkpoint shards") as pbar:
|
||||
futures = [executor.submit(load_one, shard_file) for shard_file in shard_files]
|
||||
for future in as_completed(futures):
|
||||
result = future.result()
|
||||
offload_index, state_dict_index, _mismatched_keys, _error_msgs = result
|
||||
error_msgs += _error_msgs
|
||||
mismatched_keys += _mismatched_keys
|
||||
pbar.update(1)
|
||||
|
||||
return offload_index, state_dict_index, mismatched_keys, error_msgs
|
||||
|
||||
|
||||
def _find_mismatched_keys(
|
||||
state_dict,
|
||||
model_state_dict,
|
||||
loaded_keys,
|
||||
ignore_mismatched_sizes,
|
||||
):
|
||||
mismatched_keys = []
|
||||
if ignore_mismatched_sizes:
|
||||
for checkpoint_key in loaded_keys:
|
||||
model_key = checkpoint_key
|
||||
# If the checkpoint is sharded, we may not have the key here.
|
||||
if checkpoint_key not in state_dict:
|
||||
continue
|
||||
|
||||
if model_key in model_state_dict and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape:
|
||||
mismatched_keys.append(
|
||||
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
|
||||
)
|
||||
del state_dict[checkpoint_key]
|
||||
return mismatched_keys
|
||||
|
||||
|
||||
def _load_state_dict_into_model(
|
||||
model_to_load, state_dict: OrderedDict, assign_to_params_buffers: bool = False
|
||||
) -> List[str]:
|
||||
|
||||
@@ -15,6 +15,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
import copy
|
||||
import functools
|
||||
import inspect
|
||||
import itertools
|
||||
import json
|
||||
@@ -41,7 +42,9 @@ from ..quantizers import DiffusersAutoQuantizer, DiffusersQuantizer
|
||||
from ..quantizers.quantization_config import QuantizationMethod
|
||||
from ..utils import (
|
||||
CONFIG_NAME,
|
||||
ENV_VARS_TRUE_VALUES,
|
||||
FLAX_WEIGHTS_NAME,
|
||||
HF_PARALLEL_LOADING_FLAG,
|
||||
SAFE_WEIGHTS_INDEX_NAME,
|
||||
SAFETENSORS_WEIGHTS_NAME,
|
||||
WEIGHTS_INDEX_NAME,
|
||||
@@ -69,9 +72,8 @@ from .model_loading_utils import (
|
||||
_expand_device_map,
|
||||
_fetch_index_file,
|
||||
_fetch_index_file_legacy,
|
||||
_find_mismatched_keys,
|
||||
_load_state_dict_into_model,
|
||||
load_model_dict_into_meta,
|
||||
_load_shard_file,
|
||||
_load_shard_files_with_threadpool,
|
||||
load_state_dict,
|
||||
)
|
||||
|
||||
@@ -208,34 +210,6 @@ def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype:
|
||||
return last_tuple[1].dtype
|
||||
|
||||
|
||||
def check_support_param_buffer_assignment(model_to_load, state_dict, start_prefix=""):
|
||||
"""
|
||||
Checks if `model_to_load` supports param buffer assignment (such as when loading in empty weights) by first
|
||||
checking if the model explicitly disables it, then by ensuring that the state dict keys are a subset of the model's
|
||||
parameters.
|
||||
|
||||
"""
|
||||
if model_to_load.device.type == "meta":
|
||||
return False
|
||||
|
||||
if len([key for key in state_dict if key.startswith(start_prefix)]) == 0:
|
||||
return False
|
||||
|
||||
# Some models explicitly do not support param buffer assignment
|
||||
if not getattr(model_to_load, "_supports_param_buffer_assignment", True):
|
||||
logger.debug(
|
||||
f"{model_to_load.__class__.__name__} does not support param buffer assignment, loading will be slower"
|
||||
)
|
||||
return False
|
||||
|
||||
# If the model does, the incoming `state_dict` and the `model_to_load` must be the same dtype
|
||||
first_key = next(iter(model_to_load.state_dict().keys()))
|
||||
if start_prefix + first_key in state_dict:
|
||||
return state_dict[start_prefix + first_key].dtype == model_to_load.state_dict()[first_key].dtype
|
||||
|
||||
return False
|
||||
|
||||
|
||||
@contextmanager
|
||||
def no_init_weights():
|
||||
"""
|
||||
@@ -988,6 +962,10 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
dduf_entries: Optional[Dict[str, DDUFEntry]] = kwargs.pop("dduf_entries", None)
|
||||
disable_mmap = kwargs.pop("disable_mmap", False)
|
||||
|
||||
is_parallel_loading_enabled = os.environ.get(HF_PARALLEL_LOADING_FLAG, "").upper() in ENV_VARS_TRUE_VALUES
|
||||
if is_parallel_loading_enabled and not low_cpu_mem_usage:
|
||||
raise NotImplementedError("Parallel loading is not supported when not using `low_cpu_mem_usage`.")
|
||||
|
||||
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
|
||||
torch_dtype = torch.float32
|
||||
logger.warning(
|
||||
@@ -1323,6 +1301,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
hf_quantizer=hf_quantizer,
|
||||
keep_in_fp32_modules=keep_in_fp32_modules,
|
||||
dduf_entries=dduf_entries,
|
||||
is_parallel_loading_enabled=is_parallel_loading_enabled,
|
||||
)
|
||||
loading_info = {
|
||||
"missing_keys": missing_keys,
|
||||
@@ -1518,6 +1497,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
offload_state_dict: Optional[bool] = None,
|
||||
offload_folder: Optional[Union[str, os.PathLike]] = None,
|
||||
dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
|
||||
is_parallel_loading_enabled: Optional[bool] = False,
|
||||
):
|
||||
model_state_dict = model.state_dict()
|
||||
expected_keys = list(model_state_dict.keys())
|
||||
@@ -1531,6 +1511,9 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
for pat in cls._keys_to_ignore_on_load_unexpected:
|
||||
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
|
||||
|
||||
mismatched_keys = []
|
||||
error_msgs = []
|
||||
|
||||
# Deal with offload
|
||||
if device_map is not None and "disk" in device_map.values():
|
||||
if offload_folder is None:
|
||||
@@ -1566,37 +1549,39 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
# if state dict is not None, it means that we don't need to read the files from resolved_model_file also
|
||||
resolved_model_file = [state_dict]
|
||||
|
||||
if len(resolved_model_file) > 1:
|
||||
resolved_model_file = logging.tqdm(resolved_model_file, desc="Loading checkpoint shards")
|
||||
# Prepare the loading function sharing the attributes shared between them.
|
||||
load_fn = functools.partial(
|
||||
_load_shard_files_with_threadpool if is_parallel_loading_enabled else _load_shard_file,
|
||||
model=model,
|
||||
model_state_dict=model_state_dict,
|
||||
device_map=device_map,
|
||||
dtype=dtype,
|
||||
hf_quantizer=hf_quantizer,
|
||||
keep_in_fp32_modules=keep_in_fp32_modules,
|
||||
dduf_entries=dduf_entries,
|
||||
loaded_keys=loaded_keys,
|
||||
unexpected_keys=unexpected_keys,
|
||||
offload_index=offload_index,
|
||||
offload_folder=offload_folder,
|
||||
state_dict_index=state_dict_index,
|
||||
state_dict_folder=state_dict_folder,
|
||||
ignore_mismatched_sizes=ignore_mismatched_sizes,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
|
||||
mismatched_keys = []
|
||||
assign_to_params_buffers = None
|
||||
error_msgs = []
|
||||
if is_parallel_loading_enabled:
|
||||
offload_index, state_dict_index, _mismatched_keys, _error_msgs = load_fn(resolved_model_file)
|
||||
error_msgs += _error_msgs
|
||||
mismatched_keys += _mismatched_keys
|
||||
else:
|
||||
shard_files = resolved_model_file
|
||||
if len(resolved_model_file) > 1:
|
||||
shard_files = logging.tqdm(resolved_model_file, desc="Loading checkpoint shards")
|
||||
|
||||
for shard_file in resolved_model_file:
|
||||
state_dict = load_state_dict(shard_file, dduf_entries=dduf_entries)
|
||||
mismatched_keys += _find_mismatched_keys(
|
||||
state_dict, model_state_dict, loaded_keys, ignore_mismatched_sizes
|
||||
)
|
||||
|
||||
if low_cpu_mem_usage:
|
||||
offload_index, state_dict_index = load_model_dict_into_meta(
|
||||
model,
|
||||
state_dict,
|
||||
device_map=device_map,
|
||||
dtype=dtype,
|
||||
hf_quantizer=hf_quantizer,
|
||||
keep_in_fp32_modules=keep_in_fp32_modules,
|
||||
unexpected_keys=unexpected_keys,
|
||||
offload_folder=offload_folder,
|
||||
offload_index=offload_index,
|
||||
state_dict_index=state_dict_index,
|
||||
state_dict_folder=state_dict_folder,
|
||||
)
|
||||
else:
|
||||
if assign_to_params_buffers is None:
|
||||
assign_to_params_buffers = check_support_param_buffer_assignment(model, state_dict)
|
||||
error_msgs += _load_state_dict_into_model(model, state_dict, assign_to_params_buffers)
|
||||
for shard_file in shard_files:
|
||||
offload_index, state_dict_index, _mismatched_keys, _error_msgs = load_fn(shard_file)
|
||||
error_msgs += _error_msgs
|
||||
mismatched_keys += _mismatched_keys
|
||||
|
||||
empty_device_cache()
|
||||
|
||||
|
||||
@@ -20,11 +20,13 @@ from packaging import version
|
||||
from .. import __version__
|
||||
from .constants import (
|
||||
CONFIG_NAME,
|
||||
DEFAULT_HF_PARALLEL_LOADING_WORKERS,
|
||||
DEPRECATED_REVISION_ARGS,
|
||||
DIFFUSERS_DYNAMIC_MODULE_NAME,
|
||||
FLAX_WEIGHTS_NAME,
|
||||
GGUF_FILE_EXTENSION,
|
||||
HF_MODULES_CACHE,
|
||||
HF_PARALLEL_LOADING_FLAG,
|
||||
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
|
||||
MIN_PEFT_VERSION,
|
||||
ONNX_EXTERNAL_WEIGHTS_NAME,
|
||||
|
||||
@@ -43,6 +43,8 @@ DEPRECATED_REVISION_ARGS = ["fp16", "non-ema"]
|
||||
DIFFUSERS_REQUEST_TIMEOUT = 60
|
||||
DIFFUSERS_ATTN_BACKEND = os.getenv("DIFFUSERS_ATTN_BACKEND", "native")
|
||||
DIFFUSERS_ATTN_CHECKS = os.getenv("DIFFUSERS_ATTN_CHECKS", "0") in ENV_VARS_TRUE_VALUES
|
||||
DEFAULT_HF_PARALLEL_LOADING_WORKERS = 8
|
||||
HF_PARALLEL_LOADING_FLAG = "HF_ENABLE_PARALLEL_LOADING"
|
||||
|
||||
# Below should be `True` if the current version of `peft` and `transformers` are compatible with
|
||||
# PEFT backend. Will automatically fall back to PEFT backend if the correct versions of the libraries are
|
||||
|
||||
@@ -1428,6 +1428,41 @@ class ModelTesterMixin:
|
||||
|
||||
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
||||
|
||||
@require_torch_accelerator
|
||||
def test_sharded_checkpoints_with_parallel_loading(self):
|
||||
torch.manual_seed(0)
|
||||
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
||||
model = self.model_class(**config).eval()
|
||||
model = model.to(torch_device)
|
||||
|
||||
base_output = model(**inputs_dict)
|
||||
|
||||
model_size = compute_module_persistent_sizes(model)[""]
|
||||
max_shard_size = int((model_size * 0.75) / (2**10)) # Convert to KB as these test models are small.
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
|
||||
self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
|
||||
|
||||
# Now check if the right number of shards exists. First, let's get the number of shards.
|
||||
# Since this number can be dependent on the model being tested, it's important that we calculate it
|
||||
# instead of hardcoding it.
|
||||
expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
|
||||
actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
|
||||
self.assertTrue(actual_num_shards == expected_num_shards)
|
||||
|
||||
# Load with parallel loading
|
||||
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "yes"
|
||||
new_model = self.model_class.from_pretrained(tmp_dir).eval()
|
||||
new_model = new_model.to(torch_device)
|
||||
|
||||
torch.manual_seed(0)
|
||||
if "generator" in inputs_dict:
|
||||
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
||||
new_output = new_model(**inputs_dict)
|
||||
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
||||
# set to no.
|
||||
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "no"
|
||||
|
||||
@require_torch_accelerator
|
||||
def test_sharded_checkpoints_device_map(self):
|
||||
if self.model_class._no_split_modules is None:
|
||||
|
||||
Reference in New Issue
Block a user