1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[docs] Add controlnet example to marigold (#8289)

* initial doc

* fix wrong LCM sentence

* implement binary colormap without requiring matplotlib
update section about Marigold for ControlNet
update formatting of marigold_usage.md

* fix indentation

---------

Co-authored-by: anton <anton.obukhov@gmail.com>
This commit is contained in:
Álvaro Somoza
2024-05-28 11:58:06 -04:00
committed by GitHub
parent fe5f035f79
commit ba82414106
2 changed files with 146 additions and 64 deletions

View File

@@ -14,9 +14,9 @@ specific language governing permissions and limitations under the License.
[Marigold](marigold) is a novel diffusion-based dense prediction approach, and a set of pipelines for various computer vision tasks, such as monocular depth estimation.
This guide will show you how to use Marigold to obtain fast and high-quality predictions for images and videos.
This guide will show you how to use Marigold to obtain fast and high-quality predictions for images and videos.
Each pipeline supports one Computer Vision task, which takes an input RGB image as input and produces a *prediction* of the modality of interest, such as a depth map of the input image.
Each pipeline supports one Computer Vision task, which takes an input RGB image as input and produces a *prediction* of the modality of interest, such as a depth map of the input image.
Currently, the following tasks are implemented:
| Pipeline | Predicted Modalities | Demos |
@@ -24,8 +24,8 @@ Currently, the following tasks are implemented:
| [MarigoldDepthPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_depth.py) | [Depth](https://en.wikipedia.org/wiki/Depth_map), [Disparity](https://en.wikipedia.org/wiki/Binocular_disparity) | [Fast Demo (LCM)](https://huggingface.co/spaces/prs-eth/marigold-lcm), [Slow Original Demo (DDIM)](https://huggingface.co/spaces/prs-eth/marigold) |
| [MarigoldNormalsPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_normals.py) | [Surface normals](https://en.wikipedia.org/wiki/Normal_mapping) | [Fast Demo (LCM)](https://huggingface.co/spaces/prs-eth/marigold-normals-lcm) |
The original checkpoints can be found under the [PRS-ETH](https://huggingface.co/prs-eth/) Hugging Face organization.
These checkpoints are meant to work with diffusers pipelines and the [original codebase](https://github.com/prs-eth/marigold).
The original checkpoints can be found under the [PRS-ETH](https://huggingface.co/prs-eth/) Hugging Face organization.
These checkpoints are meant to work with diffusers pipelines and the [original codebase](https://github.com/prs-eth/marigold).
The original code can also be used to train new checkpoints.
| Checkpoint | Modality | Comment |
@@ -34,22 +34,22 @@ The original code can also be used to train new checkpoints.
| [prs-eth/marigold-lcm-v1-0](https://huggingface.co/prs-eth/marigold-lcm-v1-0) | Depth | The fast Marigold Depth checkpoint, fine-tuned from `prs-eth/marigold-v1-0`. Designed to be used with the `LCMScheduler` at inference, it requires as little as 1 step to get reliable predictions. The prediction reliability saturates at 4 steps and declines after that. |
| [prs-eth/marigold-normals-v0-1](https://huggingface.co/prs-eth/marigold-normals-v0-1) | Normals | A preview checkpoint for the Marigold Normals pipeline. Designed to be used with the `DDIMScheduler` at inference, it requires at least 10 steps to get reliable predictions. The surface normals predictions are unit-length 3D vectors with values in the range from -1 to 1. *This checkpoint will be phased out after the release of `v1-0` version.* |
| [prs-eth/marigold-normals-lcm-v0-1](https://huggingface.co/prs-eth/marigold-normals-lcm-v0-1) | Normals | The fast Marigold Normals checkpoint, fine-tuned from `prs-eth/marigold-normals-v0-1`. Designed to be used with the `LCMScheduler` at inference, it requires as little as 1 step to get reliable predictions. The prediction reliability saturates at 4 steps and declines after that. *This checkpoint will be phased out after the release of `v1-0` version.* |
The examples below are mostly given for depth prediction, but they can be universally applied with other supported modalities.
We showcase the predictions using the same input image of Albert Einstein generated by Midjourney.
The examples below are mostly given for depth prediction, but they can be universally applied with other supported modalities.
We showcase the predictions using the same input image of Albert Einstein generated by Midjourney.
This makes it easier to compare visualizations of the predictions across various modalities and checkpoints.
<div class="flex gap-4" style="justify-content: center; width: 100%;">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://marigoldmonodepth.github.io/images/einstein.jpg"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Example input image for all Marigold pipelines
</figcaption>
Example input image for all Marigold pipelines
</figcaption>
</div>
</div>
### Depth Prediction Quick Start
To get the first depth prediction, load `prs-eth/marigold-depth-lcm-v1-0` checkpoint into `MarigoldDepthPipeline` pipeline, put the image through the pipeline, and save the predictions:
To get the first depth prediction, load `prs-eth/marigold-depth-lcm-v1-0` checkpoint into `MarigoldDepthPipeline` pipeline, put the image through the pipeline, and save the predictions:
```python
import diffusers
@@ -69,7 +69,7 @@ depth_16bit = pipe.image_processor.export_depth_to_16bit_png(depth.prediction)
depth_16bit[0].save("einstein_depth_16bit.png")
```
The visualization function for depth [`~pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_depth`] applies one of [matplotlib's colormaps](https://matplotlib.org/stable/users/explain/colors/colormaps.html) (`Spectral` by default) to map the predicted pixel values from a single-channel `[0, 1]` depth range into an RGB image.
The visualization function for depth [`~pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_depth`] applies one of [matplotlib's colormaps](https://matplotlib.org/stable/users/explain/colors/colormaps.html) (`Spectral` by default) to map the predicted pixel values from a single-channel `[0, 1]` depth range into an RGB image.
With the `Spectral` colormap, pixels with near depth are painted red, and far pixels are assigned blue color.
The 16-bit PNG file stores the single channel values mapped linearly from the `[0, 1]` range into `[0, 65535]`.
Below are the raw and the visualized predictions; as can be seen, dark areas (mustache) are easier to distinguish in the visualization:
@@ -78,20 +78,20 @@ Below are the raw and the visualized predictions; as can be seen, dark areas (mu
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_lcm_depth_16bit.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Predicted depth (16-bit PNG)
</figcaption>
Predicted depth (16-bit PNG)
</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_lcm_depth.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Predicted depth visualization (Spectral)
</figcaption>
Predicted depth visualization (Spectral)
</figcaption>
</div>
</div>
### Surface Normals Prediction Quick Start
Load `prs-eth/marigold-normals-lcm-v0-1` checkpoint into `MarigoldNormalsPipeline` pipeline, put the image through the pipeline, and save the predictions:
Load `prs-eth/marigold-normals-lcm-v0-1` checkpoint into `MarigoldNormalsPipeline` pipeline, put the image through the pipeline, and save the predictions:
```python
import diffusers
@@ -108,8 +108,8 @@ vis = pipe.image_processor.visualize_normals(normals.prediction)
vis[0].save("einstein_normals.png")
```
The visualization function for normals [`~pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_normals`] maps the three-dimensional prediction with pixel values in the range `[-1, 1]` into an RGB image.
The visualization function supports flipping surface normals axes to make the visualization compatible with other choices of the frame of reference.
The visualization function for normals [`~pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_normals`] maps the three-dimensional prediction with pixel values in the range `[-1, 1]` into an RGB image.
The visualization function supports flipping surface normals axes to make the visualization compatible with other choices of the frame of reference.
Conceptually, each pixel is painted according to the surface normal vector in the frame of reference, where `X` axis points right, `Y` axis points up, and `Z` axis points at the viewer.
Below is the visualized prediction:
@@ -117,19 +117,19 @@ Below is the visualized prediction:
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_lcm_normals.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Predicted surface normals visualization
</figcaption>
Predicted surface normals visualization
</figcaption>
</div>
</div>
In this example, the nose tip almost certainly has a point on the surface, in which the surface normal vector points straight at the viewer, meaning that its coordinates are `[0, 0, 1]`.
This vector maps to the RGB `[128, 128, 255]`, which corresponds to the violet-blue color.
Similarly, a surface normal on the cheek in the right part of the image has a large `X` component, which increases the red hue.
Points on the shoulders pointing up with a large `Y` promote green color.
Similarly, a surface normal on the cheek in the right part of the image has a large `X` component, which increases the red hue.
Points on the shoulders pointing up with a large `Y` promote green color.
### Speeding up inference
The above quick start snippets are already optimized for speed: they load the LCM checkpoint, use the `fp16` variant of weights and computation, and perform just one denoising diffusion step.
The above quick start snippets are already optimized for speed: they load the LCM checkpoint, use the `fp16` variant of weights and computation, and perform just one denoising diffusion step.
The `pipe(image)` call completes in 280ms on RTX 3090 GPU.
Internally, the input image is encoded with the Stable Diffusion VAE encoder, then the U-Net performs one denoising step, and finally, the prediction latent is decoded with the VAE decoder into pixel space.
In this case, two out of three module calls are dedicated to converting between pixel and latent space of LDM.
@@ -144,7 +144,7 @@ Because Marigold's latent space is compatible with the base Stable Diffusion, it
).to("cuda")
+ pipe.vae = diffusers.AutoencoderTiny.from_pretrained(
+ "madebyollin/taesd", torch_dtype=torch.float16
+ "madebyollin/taesd", torch_dtype=torch.float16
+ ).cuda()
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
@@ -175,23 +175,23 @@ With the above speed optimizations, Marigold delivers predictions with more deta
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_lcm_depth.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Marigold LCM fp16 with Tiny AutoEncoder
</figcaption>
Marigold LCM fp16 with Tiny AutoEncoder
</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/bfe7cb56ca1cc0811b328212472350879dfa7f8b/marigold/einstein_depthanything_large.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Depth Anything Large
</figcaption>
Depth Anything Large
</figcaption>
</div>
</div>
## Maximizing Precision and Ensembling
Marigold pipelines have a built-in ensembling mechanism combining multiple predictions from different random latents.
Marigold pipelines have a built-in ensembling mechanism combining multiple predictions from different random latents.
This is a brute-force way of improving the precision of predictions, capitalizing on the generative nature of diffusion.
The ensembling path is activated automatically when the `ensemble_size` argument is set greater than `1`.
When aiming for maximum precision, it makes sense to adjust `num_inference_steps` simultaneously with `ensemble_size`.
The ensembling path is activated automatically when the `ensemble_size` argument is set greater than `1`.
When aiming for maximum precision, it makes sense to adjust `num_inference_steps` simultaneously with `ensemble_size`.
The recommended values vary across checkpoints but primarily depend on the scheduler type.
The effect of ensembling is particularly well-seen with surface normals:
@@ -226,14 +226,14 @@ vis[0].save("einstein_normals.png")
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_lcm_normals.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Surface normals, no ensembling
</figcaption>
Surface normals, no ensembling
</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_normals.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Surface normals, with ensembling
</figcaption>
Surface normals, with ensembling
</figcaption>
</div>
</div>
@@ -242,7 +242,7 @@ Such a result is more suitable for precision-sensitive downstream tasks, such as
## Quantitative Evaluation
To evaluate Marigold quantitatively in standard leaderboards and benchmarks (such as NYU, KITTI, and other datasets), follow the evaluation protocol outlined in the paper: load the full precision fp32 model and use appropriate values for `num_inference_steps` and `ensemble_size`.
To evaluate Marigold quantitatively in standard leaderboards and benchmarks (such as NYU, KITTI, and other datasets), follow the evaluation protocol outlined in the paper: load the full precision fp32 model and use appropriate values for `num_inference_steps` and `ensemble_size`.
Optionally seed randomness to ensure reproducibility. Maximizing `batch_size` will deliver maximum device utilization.
```python
@@ -277,7 +277,7 @@ depth = pipe(image, generator=generator, **pipe_kwargs)
## Using Predictive Uncertainty
The ensembling mechanism built into Marigold pipelines combines multiple predictions obtained from different random latents.
The ensembling mechanism built into Marigold pipelines combines multiple predictions obtained from different random latents.
As a side effect, it can be used to quantify epistemic (model) uncertainty; simply specify `ensemble_size` greater than 1 and set `output_uncertainty=True`.
The resulting uncertainty will be available in the `uncertainty` field of the output.
It can be visualized as follows:
@@ -305,14 +305,14 @@ uncertainty[0].save("einstein_depth_uncertainty.png")
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_depth_uncertainty.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Depth uncertainty
</figcaption>
Depth uncertainty
</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_normals_uncertainty.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Surface normals uncertainty
</figcaption>
Surface normals uncertainty
</figcaption>
</div>
</div>
@@ -322,7 +322,7 @@ The surface normals model is the least confident in fine-grained structures, suc
## Frame-by-frame Video Processing with Temporal Consistency
Due to Marigold's generative nature, each prediction is unique and defined by the random noise sampled for the latent initialization.
Due to Marigold's generative nature, each prediction is unique and defined by the random noise sampled for the latent initialization.
This becomes an obvious drawback compared to traditional end-to-end dense regression networks, as exemplified in the following videos:
<div class="flex gap-4">
@@ -373,7 +373,7 @@ with imageio.get_reader(path_in) as reader:
latents = 0.9 * latents + 0.1 * last_frame_latent
depth = pipe(
frame, match_input_resolution=False, latents=latents, output_latent=True,
frame, match_input_resolution=False, latents=latents, output_latent=True
)
last_frame_latent = depth.latent
out.append(pipe.image_processor.visualize_depth(depth.prediction)[0])
@@ -381,7 +381,7 @@ with imageio.get_reader(path_in) as reader:
diffusers.utils.export_to_gif(out, path_out, fps=reader.get_meta_data()['fps'])
```
Here, the diffusion process starts from the given computed latent.
Here, the diffusion process starts from the given computed latent.
The pipeline sets `output_latent=True` to access `out.latent` and computes its contribution to the next frame's latent initialization.
The result is much more stable now:
@@ -396,4 +396,71 @@ The result is much more stable now:
</div>
</div>
Hopefully, you will find Marigold useful for solving your downstream tasks, be it a part of a more broad generative workflow, or a broader perception task, such as 3D reconstruction.
## Marigold for ControlNet
A very common application for depth prediction with diffusion models comes in conjunction with ControlNet.
Depth crispness plays a crucial role in obtaining high-quality results from ControlNet.
As seen in comparisons with other methods above, Marigold excels at that task.
The snippet below demonstrates how to load an image, compute depth, and pass it into ControlNet in a compatible format:
```python
import torch
import diffusers
device = "cuda"
generator = torch.Generator(device=device).manual_seed(2024)
image = diffusers.utils.load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_depth_source.png"
)
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-lcm-v1-0", torch_dtype=torch.float16, variant="fp16"
).to("cuda")
depth_image = pipe(image, generator=generator).prediction
depth_image = pipe.image_processor.visualize_depth(depth_image, color_map="binary")
depth_image[0].save("motorcycle_controlnet_depth.png")
controlnet = diffusers.ControlNetModel.from_pretrained(
"diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch.float16, variant="fp16"
).to("cuda")
pipe = diffusers.StableDiffusionXLControlNetPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, variant="fp16", controlnet=controlnet
).to("cuda")
pipe.scheduler = diffusers.DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
controlnet_out = pipe(
prompt="high quality photo of a sports bike, city",
negative_prompt="",
guidance_scale=6.5,
num_inference_steps=25,
image=depth_image,
controlnet_conditioning_scale=0.7,
control_guidance_end=0.7,
generator=generator,
).images
controlnet_out[0].save("motorcycle_controlnet_out.png")
```
<div class="flex gap-4">
<div style="flex: 1 1 33%; max-width: 33%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_depth_source.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Input image
</figcaption>
</div>
<div style="flex: 1 1 33%; max-width: 33%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/8e61e31f9feb7756c0404ceff26f3f0e5d3fe610/marigold/motorcycle_controlnet_depth.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Depth in the format compatible with ControlNet
</figcaption>
</div>
<div style="flex: 1 1 33%; max-width: 33%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/8e61e31f9feb7756c0404ceff26f3f0e5d3fe610/marigold/motorcycle_controlnet_out.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
ControlNet generation, conditioned on depth and prompt: "high quality photo of a sports bike, city"
</figcaption>
</div>
</div>
Hopefully, you will find Marigold useful for solving your downstream tasks, be it a part of a more broad generative workflow, or a perception task, such as 3D reconstruction.

View File

@@ -245,9 +245,9 @@ class MarigoldImageProcessor(ConfigMixin):
) -> Union[np.ndarray, torch.Tensor]:
"""
Converts a monochrome image into an RGB image by applying the specified colormap. This function mimics the
behavior of matplotlib.colormaps, but allows the user to use the most discriminative color map "Spectral"
without having to install or import matplotlib. For all other cases, the function will attempt to use the
native implementation.
behavior of matplotlib.colormaps, but allows the user to use the most discriminative color maps ("Spectral",
"binary") without having to install or import matplotlib. For all other cases, the function will attempt to use
the native implementation.
Args:
image: 2D tensor of values between 0 and 1, either as np.ndarray or torch.Tensor.
@@ -255,7 +255,7 @@ class MarigoldImageProcessor(ConfigMixin):
bytes: Whether to return the output as uint8 or floating point image.
_force_method:
Can be used to specify whether to use the native implementation (`"matplotlib"`), the efficient custom
implementation of the "Spectral" color map (`"custom"`), or rely on autodetection (`None`, default).
implementation of the select color maps (`"custom"`), or rely on autodetection (`None`, default).
Returns:
An RGB-colorized tensor corresponding to the input image.
@@ -265,6 +265,26 @@ class MarigoldImageProcessor(ConfigMixin):
if _force_method not in (None, "matplotlib", "custom"):
raise ValueError("_force_method must be either `None`, `'matplotlib'` or `'custom'`.")
supported_cmaps = {
"binary": [
(1.0, 1.0, 1.0),
(0.0, 0.0, 0.0),
],
"Spectral": [ # Taken from matplotlib/_cm.py
(0.61960784313725492, 0.003921568627450980, 0.25882352941176473), # 0.0 -> [0]
(0.83529411764705885, 0.24313725490196078, 0.30980392156862746),
(0.95686274509803926, 0.42745098039215684, 0.2627450980392157),
(0.99215686274509807, 0.68235294117647061, 0.38039215686274508),
(0.99607843137254903, 0.8784313725490196, 0.54509803921568623),
(1.0, 1.0, 0.74901960784313726),
(0.90196078431372551, 0.96078431372549022, 0.59607843137254901),
(0.6705882352941176, 0.8666666666666667, 0.64313725490196083),
(0.4, 0.76078431372549016, 0.6470588235294118),
(0.19607843137254902, 0.53333333333333333, 0.74117647058823533),
(0.36862745098039218, 0.30980392156862746, 0.63529411764705879), # 1.0 -> [K-1]
],
}
def method_matplotlib(image, cmap, bytes=False):
if is_matplotlib_available():
import matplotlib
@@ -298,24 +318,19 @@ class MarigoldImageProcessor(ConfigMixin):
else:
image = image.float()
if cmap != "Spectral":
raise ValueError("Only 'Spectral' color map is available without installing matplotlib.")
is_cmap_reversed = cmap.endswith("_r")
if is_cmap_reversed:
cmap = cmap[:-2]
_Spectral_data = ( # Taken from matplotlib/_cm.py
(0.61960784313725492, 0.003921568627450980, 0.25882352941176473), # 0.0 -> [0]
(0.83529411764705885, 0.24313725490196078, 0.30980392156862746),
(0.95686274509803926, 0.42745098039215684, 0.2627450980392157),
(0.99215686274509807, 0.68235294117647061, 0.38039215686274508),
(0.99607843137254903, 0.8784313725490196, 0.54509803921568623),
(1.0, 1.0, 0.74901960784313726),
(0.90196078431372551, 0.96078431372549022, 0.59607843137254901),
(0.6705882352941176, 0.8666666666666667, 0.64313725490196083),
(0.4, 0.76078431372549016, 0.6470588235294118),
(0.19607843137254902, 0.53333333333333333, 0.74117647058823533),
(0.36862745098039218, 0.30980392156862746, 0.63529411764705879), # 1.0 -> [K-1]
)
if cmap not in supported_cmaps:
raise ValueError(
f"Only {list(supported_cmaps.keys())} color maps are available without installing matplotlib."
)
cmap = torch.tensor(_Spectral_data, dtype=torch.float, device=image.device) # [K,3]
cmap = supported_cmaps[cmap]
if is_cmap_reversed:
cmap = cmap[::-1]
cmap = torch.tensor(cmap, dtype=torch.float, device=image.device) # [K,3]
K = cmap.shape[0]
pos = image.clamp(min=0, max=1) * (K - 1)