mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
[Tests] Improve transformers model test suite coverage - Lumina (#8987)
* Added test suite for lumina * Fixed failing tests * Improved code quality * Added function docstrings * Improved formatting
This commit is contained in:
111
tests/models/transformers/test_models_transformer_lumina.py
Normal file
111
tests/models/transformers/test_models_transformer_lumina.py
Normal file
@@ -0,0 +1,111 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import LuminaNextDiT2DModel
|
||||
from diffusers.utils.testing_utils import (
|
||||
enable_full_determinism,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
from ..test_modeling_common import ModelTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class LuminaNextDiT2DModelTransformerTests(ModelTesterMixin, unittest.TestCase):
|
||||
model_class = LuminaNextDiT2DModel
|
||||
main_input_name = "hidden_states"
|
||||
|
||||
@property
|
||||
def dummy_input(self):
|
||||
"""
|
||||
Args:
|
||||
None
|
||||
Returns:
|
||||
Dict: Dictionary of dummy input tensors
|
||||
"""
|
||||
batch_size = 2 # N
|
||||
num_channels = 4 # C
|
||||
height = width = 16 # H, W
|
||||
embedding_dim = 32 # D
|
||||
sequence_length = 16 # L
|
||||
|
||||
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
|
||||
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
|
||||
timestep = torch.rand(size=(batch_size,)).to(torch_device)
|
||||
encoder_mask = torch.randn(size=(batch_size, sequence_length)).to(torch_device)
|
||||
image_rotary_emb = torch.randn((384, 384, 4)).to(torch_device)
|
||||
|
||||
return {
|
||||
"hidden_states": hidden_states,
|
||||
"encoder_hidden_states": encoder_hidden_states,
|
||||
"timestep": timestep,
|
||||
"encoder_mask": encoder_mask,
|
||||
"image_rotary_emb": image_rotary_emb,
|
||||
"cross_attention_kwargs": {},
|
||||
}
|
||||
|
||||
@property
|
||||
def input_shape(self):
|
||||
"""
|
||||
Args:
|
||||
None
|
||||
Returns:
|
||||
Tuple: (int, int, int)
|
||||
"""
|
||||
return (4, 16, 16)
|
||||
|
||||
@property
|
||||
def output_shape(self):
|
||||
"""
|
||||
Args:
|
||||
None
|
||||
Returns:
|
||||
Tuple: (int, int, int)
|
||||
"""
|
||||
return (4, 16, 16)
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
"""
|
||||
Args:
|
||||
None
|
||||
|
||||
Returns:
|
||||
Tuple: (Dict, Dict)
|
||||
"""
|
||||
init_dict = {
|
||||
"sample_size": 16,
|
||||
"patch_size": 2,
|
||||
"in_channels": 4,
|
||||
"hidden_size": 24,
|
||||
"num_layers": 2,
|
||||
"num_attention_heads": 3,
|
||||
"num_kv_heads": 1,
|
||||
"multiple_of": 16,
|
||||
"ffn_dim_multiplier": None,
|
||||
"norm_eps": 1e-5,
|
||||
"learn_sigma": False,
|
||||
"qk_norm": True,
|
||||
"cross_attention_dim": 32,
|
||||
"scaling_factor": 1.0,
|
||||
}
|
||||
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
Reference in New Issue
Block a user