1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Remove CogVideoX mentions from single file docs; Test updates (#9444)

* remove mentions from single file

* update tests

* update
This commit is contained in:
Aryan
2024-09-18 01:35:45 +05:30
committed by GitHub
parent bb1b0fa1f9
commit ba06124e4a
4 changed files with 9 additions and 18 deletions

View File

@@ -22,9 +22,6 @@ The [`~loaders.FromSingleFileMixin.from_single_file`] method allows you to load:
## Supported pipelines
- [`CogVideoXPipeline`]
- [`CogVideoXImageToVideoPipeline`]
- [`CogVideoXVideoToVideoPipeline`]
- [`StableDiffusionPipeline`]
- [`StableDiffusionImg2ImgPipeline`]
- [`StableDiffusionInpaintPipeline`]
@@ -52,7 +49,6 @@ The [`~loaders.FromSingleFileMixin.from_single_file`] method allows you to load:
- [`UNet2DConditionModel`]
- [`StableCascadeUNet`]
- [`AutoencoderKL`]
- [`AutoencoderKLCogVideoX`]
- [`ControlNetModel`]
- [`SD3Transformer2DModel`]
- [`FluxTransformer2DModel`]

View File

@@ -57,6 +57,7 @@ class CogVideoXPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
"callback_on_step_end_tensor_inputs",
]
)
test_xformers_attention = False
def get_dummy_components(self):
torch.manual_seed(0)
@@ -71,8 +72,8 @@ class CogVideoXPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
time_embed_dim=2,
text_embed_dim=32, # Must match with tiny-random-t5
num_layers=1,
sample_width=16, # latent width: 2 -> final width: 16
sample_height=16, # latent height: 2 -> final height: 16
sample_width=2, # latent width: 2 -> final width: 16
sample_height=2, # latent height: 2 -> final height: 16
sample_frames=9, # latent frames: (9 - 1) / 4 + 1 = 3 -> final frames: 9
patch_size=2,
temporal_compression_ratio=4,
@@ -280,10 +281,6 @@ class CogVideoXPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
"VAE tiling should not affect the inference results",
)
@unittest.skip("xformers attention processor does not exist for CogVideoX")
def test_xformers_attention_forwardGenerator_pass(self):
pass
def test_fused_qkv_projections(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()

View File

@@ -269,8 +269,9 @@ class CogVideoXPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
generator_device = "cpu"
components = self.get_dummy_components()
# The reason to modify it this way is because I2V Transformer limits the generation to resolutions.
# See the if-statement on "self.use_learned_positional_embeddings"
# The reason to modify it this way is because I2V Transformer limits the generation to resolutions used during initalization.
# This limitation comes from using learned positional embeddings which cannot be generated on-the-fly like sincos or RoPE embeddings.
# See the if-statement on "self.use_learned_positional_embeddings" in diffusers/models/embeddings.py
components["transformer"] = CogVideoXTransformer3DModel.from_config(
components["transformer"].config,
sample_height=16,

View File

@@ -51,6 +51,7 @@ class CogVideoXVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestC
"callback_on_step_end_tensor_inputs",
]
)
test_xformers_attention = False
def get_dummy_components(self):
torch.manual_seed(0)
@@ -65,8 +66,8 @@ class CogVideoXVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestC
time_embed_dim=2,
text_embed_dim=32, # Must match with tiny-random-t5
num_layers=1,
sample_width=16, # latent width: 2 -> final width: 16
sample_height=16, # latent height: 2 -> final height: 16
sample_width=2, # latent width: 2 -> final width: 16
sample_height=2, # latent height: 2 -> final height: 16
sample_frames=9, # latent frames: (9 - 1) / 4 + 1 = 3 -> final frames: 9
patch_size=2,
temporal_compression_ratio=4,
@@ -285,10 +286,6 @@ class CogVideoXVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestC
"VAE tiling should not affect the inference results",
)
@unittest.skip("xformers attention processor does not exist for CogVideoX")
def test_xformers_attention_forwardGenerator_pass(self):
pass
def test_fused_qkv_projections(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()