1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

Modular Diffusers Guiders (#11311)

* cfg; slg; pag; sdxl without controlnet

* support sdxl controlnet

* support controlnet union

* update

* update

* cfg zero*

* use unwrap_module for torch compiled modules

* remove guider kwargs

* remove commented code

* remove old guider

* fix slg bug

* remove debug print

* autoguidance

* smoothed energy guidance

* add note about seg

* tangential cfg

* cfg plus plus

* support cfgpp in ddim

* apply review suggestions

* refactor

* rename enable/disable

* remove cfg++ for now

* rename do_classifier_free_guidance->prepare_unconditional_embeds

* remove unused
This commit is contained in:
Aryan
2025-04-26 03:42:42 +05:30
committed by GitHub
parent d143851309
commit b863bdd6ca
19 changed files with 2452 additions and 1069 deletions

View File

@@ -33,6 +33,7 @@ from .utils import (
_import_structure = {
"configuration_utils": ["ConfigMixin"],
"guiders": [],
"hooks": [],
"loaders": ["FromOriginalModelMixin"],
"models": [],
@@ -129,12 +130,26 @@ except OptionalDependencyNotAvailable:
_import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")]
else:
_import_structure["guiders"].extend(
[
"AdaptiveProjectedGuidance",
"AutoGuidance",
"ClassifierFreeGuidance",
"ClassifierFreeZeroStarGuidance",
"SkipLayerGuidance",
"SmoothedEnergyGuidance",
"TangentialClassifierFreeGuidance",
]
)
_import_structure["hooks"].extend(
[
"FasterCacheConfig",
"HookRegistry",
"PyramidAttentionBroadcastConfig",
"LayerSkipConfig",
"SmoothedEnergyGuidanceConfig",
"apply_faster_cache",
"apply_layer_skip",
"apply_pyramid_attention_broadcast",
]
)
@@ -711,10 +726,22 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .guiders import (
AdaptiveProjectedGuidance,
AutoGuidance,
ClassifierFreeGuidance,
ClassifierFreeZeroStarGuidance,
SkipLayerGuidance,
SmoothedEnergyGuidance,
TangentialClassifierFreeGuidance,
)
from .hooks import (
FasterCacheConfig,
HookRegistry,
LayerSkipConfig,
PyramidAttentionBroadcastConfig,
SmoothedEnergyGuidanceConfig,
apply_layer_skip,
apply_faster_cache,
apply_pyramid_attention_broadcast,
)

View File

@@ -1,748 +0,0 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from .models.attention_processor import (
Attention,
AttentionProcessor,
PAGCFGIdentitySelfAttnProcessor2_0,
PAGIdentitySelfAttnProcessor2_0,
)
from .utils import logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
r"""
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf).
Args:
noise_cfg (`torch.Tensor`):
The predicted noise tensor for the guided diffusion process.
noise_pred_text (`torch.Tensor`):
The predicted noise tensor for the text-guided diffusion process.
guidance_rescale (`float`, *optional*, defaults to 0.0):
A rescale factor applied to the noise predictions.
Returns:
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class CFGGuider:
"""
This class is used to guide the pipeline with CFG (Classifier-Free Guidance).
"""
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1.0 and not self._disable_guidance
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def guidance_scale(self):
return self._guidance_scale
@property
def batch_size(self):
return self._batch_size
def set_guider(self, pipeline, guider_kwargs: Dict[str, Any]):
# a flag to disable CFG, e.g. we disable it for LCM and use a guidance scale embedding instead
disable_guidance = guider_kwargs.get("disable_guidance", False)
guidance_scale = guider_kwargs.get("guidance_scale", None)
if guidance_scale is None:
raise ValueError("guidance_scale is not provided in guider_kwargs")
guidance_rescale = guider_kwargs.get("guidance_rescale", 0.0)
batch_size = guider_kwargs.get("batch_size", None)
if batch_size is None:
raise ValueError("batch_size is not provided in guider_kwargs")
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._batch_size = batch_size
self._disable_guidance = disable_guidance
def reset_guider(self, pipeline):
pass
def maybe_update_guider(self, pipeline, timestep):
pass
def maybe_update_input(self, pipeline, cond_input):
pass
def _maybe_split_prepared_input(self, cond):
"""
Process and potentially split the conditional input for Classifier-Free Guidance (CFG).
This method handles inputs that may already have CFG applied (i.e. when `cond` is output of `prepare_input`).
It determines whether to split the input based on its batch size relative to the expected batch size.
Args:
cond (torch.Tensor): The conditional input tensor to process.
Returns:
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
- The negative conditional input (uncond_input)
- The positive conditional input (cond_input)
"""
if cond.shape[0] == self.batch_size * 2:
neg_cond = cond[0 : self.batch_size]
cond = cond[self.batch_size :]
return neg_cond, cond
elif cond.shape[0] == self.batch_size:
return cond, cond
else:
raise ValueError(f"Unsupported input shape: {cond.shape}")
def _is_prepared_input(self, cond):
"""
Check if the input is already prepared for Classifier-Free Guidance (CFG).
Args:
cond (torch.Tensor): The conditional input tensor to check.
Returns:
bool: True if the input is already prepared, False otherwise.
"""
cond_tensor = cond[0] if isinstance(cond, (list, tuple)) else cond
return cond_tensor.shape[0] == self.batch_size * 2
def prepare_input(
self,
cond_input: Union[torch.Tensor, List[torch.Tensor]],
negative_cond_input: Optional[Union[torch.Tensor, List[torch.Tensor]]] = None,
) -> Union[torch.Tensor, List[torch.Tensor]]:
"""
Prepare the input for CFG.
Args:
cond_input (Union[torch.Tensor, List[torch.Tensor]]):
The conditional input. It can be a single tensor or a
list of tensors. It must have the same length as `negative_cond_input`.
negative_cond_input (Union[torch.Tensor, List[torch.Tensor]]): The negative conditional input. It can be a
single tensor or a list of tensors. It must have the same length as `cond_input`.
Returns:
Union[torch.Tensor, List[torch.Tensor]]: The prepared input.
"""
# we check if cond_input already has CFG applied, and split if it is the case.
if self._is_prepared_input(cond_input) and self.do_classifier_free_guidance:
return cond_input
if self._is_prepared_input(cond_input) and not self.do_classifier_free_guidance:
if isinstance(cond_input, list):
negative_cond_input, cond_input = zip(*[self._maybe_split_prepared_input(cond) for cond in cond_input])
else:
negative_cond_input, cond_input = self._maybe_split_prepared_input(cond_input)
if not self._is_prepared_input(cond_input) and self.do_classifier_free_guidance and negative_cond_input is None:
raise ValueError(
"`negative_cond_input` is required when cond_input does not already contains negative conditional input"
)
if isinstance(cond_input, (list, tuple)):
if not self.do_classifier_free_guidance:
return cond_input
if len(negative_cond_input) != len(cond_input):
raise ValueError("The length of negative_cond_input and cond_input must be the same.")
prepared_input = []
for neg_cond, cond in zip(negative_cond_input, cond_input):
if neg_cond.shape[0] != cond.shape[0]:
raise ValueError("The batch size of negative_cond_input and cond_input must be the same.")
prepared_input.append(torch.cat([neg_cond, cond], dim=0))
return prepared_input
elif isinstance(cond_input, torch.Tensor):
if not self.do_classifier_free_guidance:
return cond_input
else:
return torch.cat([negative_cond_input, cond_input], dim=0)
else:
raise ValueError(f"Unsupported input type: {type(cond_input)}")
def apply_guidance(
self,
model_output: torch.Tensor,
timestep: int = None,
latents: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if not self.do_classifier_free_guidance:
return model_output
noise_pred_uncond, noise_pred_text = model_output.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
if self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
return noise_pred
class PAGGuider:
"""
This class is used to guide the pipeline with CFG (Classifier-Free Guidance).
"""
def __init__(
self,
pag_applied_layers: Union[str, List[str]],
pag_attn_processors: Tuple[AttentionProcessor, AttentionProcessor] = (
PAGCFGIdentitySelfAttnProcessor2_0(),
PAGIdentitySelfAttnProcessor2_0(),
),
):
r"""
Set the the self-attention layers to apply PAG. Raise ValueError if the input is invalid.
Args:
pag_applied_layers (`str` or `List[str]`):
One or more strings identifying the layer names, or a simple regex for matching multiple layers, where
PAG is to be applied. A few ways of expected usage are as follows:
- Single layers specified as - "blocks.{layer_index}"
- Multiple layers as a list - ["blocks.{layers_index_1}", "blocks.{layer_index_2}", ...]
- Multiple layers as a block name - "mid"
- Multiple layers as regex - "blocks.({layer_index_1}|{layer_index_2})"
pag_attn_processors:
(`Tuple[AttentionProcessor, AttentionProcessor]`, defaults to `(PAGCFGIdentitySelfAttnProcessor2_0(),
PAGIdentitySelfAttnProcessor2_0())`): A tuple of two attention processors. The first attention
processor is for PAG with Classifier-free guidance enabled (conditional and unconditional). The second
attention processor is for PAG with CFG disabled (unconditional only).
"""
if not isinstance(pag_applied_layers, list):
pag_applied_layers = [pag_applied_layers]
if pag_attn_processors is not None:
if not isinstance(pag_attn_processors, tuple) or len(pag_attn_processors) != 2:
raise ValueError("Expected a tuple of two attention processors")
for i in range(len(pag_applied_layers)):
if not isinstance(pag_applied_layers[i], str):
raise ValueError(
f"Expected either a string or a list of string but got type {type(pag_applied_layers[i])}"
)
self.pag_applied_layers = pag_applied_layers
self._pag_attn_processors = pag_attn_processors
def _set_pag_attn_processor(self, model, pag_applied_layers, do_classifier_free_guidance):
r"""
Set the attention processor for the PAG layers.
"""
pag_attn_processors = self._pag_attn_processors
pag_attn_proc = pag_attn_processors[0] if do_classifier_free_guidance else pag_attn_processors[1]
def is_self_attn(module: nn.Module) -> bool:
r"""
Check if the module is self-attention module based on its name.
"""
return isinstance(module, Attention) and not module.is_cross_attention
def is_fake_integral_match(layer_id, name):
layer_id = layer_id.split(".")[-1]
name = name.split(".")[-1]
return layer_id.isnumeric() and name.isnumeric() and layer_id == name
for layer_id in pag_applied_layers:
# for each PAG layer input, we find corresponding self-attention layers in the unet model
target_modules = []
for name, module in model.named_modules():
# Identify the following simple cases:
# (1) Self Attention layer existing
# (2) Whether the module name matches pag layer id even partially
# (3) Make sure it's not a fake integral match if the layer_id ends with a number
# For example, blocks.1, blocks.10 should be differentiable if layer_id="blocks.1"
if (
is_self_attn(module)
and re.search(layer_id, name) is not None
and not is_fake_integral_match(layer_id, name)
):
logger.debug(f"Applying PAG to layer: {name}")
target_modules.append(module)
if len(target_modules) == 0:
raise ValueError(f"Cannot find PAG layer to set attention processor for: {layer_id}")
for module in target_modules:
module.processor = pag_attn_proc
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1 and not self._disable_guidance
@property
def do_perturbed_attention_guidance(self):
return self._pag_scale > 0 and not self._disable_guidance
@property
def do_pag_adaptive_scaling(self):
return self._pag_adaptive_scale > 0 and self._pag_scale > 0 and not self._disable_guidance
@property
def guidance_scale(self):
return self._guidance_scale
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def batch_size(self):
return self._batch_size
@property
def pag_scale(self):
return self._pag_scale
@property
def pag_adaptive_scale(self):
return self._pag_adaptive_scale
def set_guider(self, pipeline, guider_kwargs: Dict[str, Any]):
pag_scale = guider_kwargs.get("pag_scale", 3.0)
pag_adaptive_scale = guider_kwargs.get("pag_adaptive_scale", 0.0)
batch_size = guider_kwargs.get("batch_size", None)
if batch_size is None:
raise ValueError("batch_size is a required argument for PAGGuider")
guidance_scale = guider_kwargs.get("guidance_scale", None)
guidance_rescale = guider_kwargs.get("guidance_rescale", 0.0)
disable_guidance = guider_kwargs.get("disable_guidance", False)
if guidance_scale is None:
raise ValueError("guidance_scale is a required argument for PAGGuider")
self._pag_scale = pag_scale
self._pag_adaptive_scale = pag_adaptive_scale
self._guidance_scale = guidance_scale
self._disable_guidance = disable_guidance
self._guidance_rescale = guidance_rescale
self._batch_size = batch_size
if not hasattr(pipeline, "original_attn_proc") or pipeline.original_attn_proc is None:
pipeline.original_attn_proc = pipeline.unet.attn_processors
self._set_pag_attn_processor(
model=pipeline.unet if hasattr(pipeline, "unet") else pipeline.transformer,
pag_applied_layers=self.pag_applied_layers,
do_classifier_free_guidance=self.do_classifier_free_guidance,
)
def reset_guider(self, pipeline):
if (
self.do_perturbed_attention_guidance
and hasattr(pipeline, "original_attn_proc")
and pipeline.original_attn_proc is not None
):
pipeline.unet.set_attn_processor(pipeline.original_attn_proc)
pipeline.original_attn_proc = None
def maybe_update_guider(self, pipeline, timestep):
pass
def maybe_update_input(self, pipeline, cond_input):
pass
def _is_prepared_input(self, cond):
"""
Check if the input is already prepared for Perturbed Attention Guidance (PAG).
Args:
cond (torch.Tensor): The conditional input tensor to check.
Returns:
bool: True if the input is already prepared, False otherwise.
"""
cond_tensor = cond[0] if isinstance(cond, (list, tuple)) else cond
return cond_tensor.shape[0] == self.batch_size * 3
def _maybe_split_prepared_input(self, cond):
"""
Process and potentially split the conditional input for Classifier-Free Guidance (CFG).
This method handles inputs that may already have CFG applied (i.e. when `cond` is output of `prepare_input`).
It determines whether to split the input based on its batch size relative to the expected batch size.
Args:
cond (torch.Tensor): The conditional input tensor to process.
Returns:
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
- The negative conditional input (uncond_input)
- The positive conditional input (cond_input)
"""
if cond.shape[0] == self.batch_size * 3:
neg_cond = cond[0 : self.batch_size]
cond = cond[self.batch_size : self.batch_size * 2]
return neg_cond, cond
elif cond.shape[0] == self.batch_size:
return cond, cond
else:
raise ValueError(f"Unsupported input shape: {cond.shape}")
def prepare_input(
self,
cond_input: Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor, ...]],
negative_cond_input: Optional[Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor, ...]]] = None,
) -> Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor, ...]]:
"""
Prepare the input for CFG.
Args:
cond_input (Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor, ...]]):
The conditional input. It can be a single tensor or a
list of tensors. It must have the same length as `negative_cond_input`.
negative_cond_input (Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor, ...]]):
The negative conditional input. It can be a single tensor or a list of tensors. It must have the same
length as `cond_input`.
Returns:
Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor, ...]]: The prepared input.
"""
# we check if cond_input already has CFG applied, and split if it is the case.
if self._is_prepared_input(cond_input) and self.do_perturbed_attention_guidance:
return cond_input
if self._is_prepared_input(cond_input) and not self.do_perturbed_attention_guidance:
if isinstance(cond_input, list):
negative_cond_input, cond_input = zip(*[self._maybe_split_prepared_input(cond) for cond in cond_input])
else:
negative_cond_input, cond_input = self._maybe_split_prepared_input(cond_input)
if not self._is_prepared_input(cond_input) and self.do_perturbed_attention_guidance and negative_cond_input is None:
raise ValueError(
"`negative_cond_input` is required when cond_input does not already contains negative conditional input"
)
if isinstance(cond_input, (list, tuple)):
if not self.do_perturbed_attention_guidance:
return cond_input
if len(negative_cond_input) != len(cond_input):
raise ValueError("The length of negative_cond_input and cond_input must be the same.")
prepared_input = []
for neg_cond, cond in zip(negative_cond_input, cond_input):
if neg_cond.shape[0] != cond.shape[0]:
raise ValueError("The batch size of negative_cond_input and cond_input must be the same.")
cond = torch.cat([cond] * 2, dim=0)
if self.do_classifier_free_guidance:
prepared_input.append(torch.cat([neg_cond, cond], dim=0))
else:
prepared_input.append(cond)
return prepared_input
elif isinstance(cond_input, torch.Tensor):
if not self.do_perturbed_attention_guidance:
return cond_input
cond_input = torch.cat([cond_input] * 2, dim=0)
if self.do_classifier_free_guidance:
return torch.cat([negative_cond_input, cond_input], dim=0)
else:
return cond_input
else:
raise ValueError(f"Unsupported input type: {type(negative_cond_input)} and {type(cond_input)}")
def apply_guidance(
self,
model_output: torch.Tensor,
timestep: int,
latents: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if not self.do_perturbed_attention_guidance:
return model_output
if self.do_pag_adaptive_scaling:
pag_scale = max(self._pag_scale - self._pag_adaptive_scale * (1000 - timestep), 0)
else:
pag_scale = self._pag_scale
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text, noise_pred_perturb = model_output.chunk(3)
noise_pred = (
noise_pred_uncond
+ self.guidance_scale * (noise_pred_text - noise_pred_uncond)
+ pag_scale * (noise_pred_text - noise_pred_perturb)
)
else:
noise_pred_text, noise_pred_perturb = model_output.chunk(2)
noise_pred = noise_pred_text + pag_scale * (noise_pred_text - noise_pred_perturb)
if self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
return noise_pred
class MomentumBuffer:
def __init__(self, momentum: float):
self.momentum = momentum
self.running_average = 0
def update(self, update_value: torch.Tensor):
new_average = self.momentum * self.running_average
self.running_average = update_value + new_average
class APGGuider:
"""
This class is used to guide the pipeline with APG (Adaptive Projected Guidance).
"""
def normalized_guidance(
self,
pred_cond: torch.Tensor,
pred_uncond: torch.Tensor,
guidance_scale: float,
momentum_buffer: MomentumBuffer = None,
norm_threshold: float = 0.0,
eta: float = 1.0,
):
"""
Based on the findings of [Eliminating Oversaturation and Artifacts of High Guidance Scales in Diffusion
Models](https://arxiv.org/pdf/2410.02416)
"""
diff = pred_cond - pred_uncond
if momentum_buffer is not None:
momentum_buffer.update(diff)
diff = momentum_buffer.running_average
if norm_threshold > 0:
ones = torch.ones_like(diff)
diff_norm = diff.norm(p=2, dim=[-1, -2, -3], keepdim=True)
scale_factor = torch.minimum(ones, norm_threshold / diff_norm)
diff = diff * scale_factor
v0, v1 = diff.double(), pred_cond.double()
v1 = torch.nn.functional.normalize(v1, dim=[-1, -2, -3])
v0_parallel = (v0 * v1).sum(dim=[-1, -2, -3], keepdim=True) * v1
v0_orthogonal = v0 - v0_parallel
diff_parallel, diff_orthogonal = v0_parallel.to(diff.dtype), v0_orthogonal.to(diff.dtype)
normalized_update = diff_orthogonal + eta * diff_parallel
pred_guided = pred_cond + (guidance_scale - 1) * normalized_update
return pred_guided
@property
def adaptive_projected_guidance_momentum(self):
return self._adaptive_projected_guidance_momentum
@property
def adaptive_projected_guidance_rescale_factor(self):
return self._adaptive_projected_guidance_rescale_factor
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1.0 and not self._disable_guidance
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def guidance_scale(self):
return self._guidance_scale
@property
def batch_size(self):
return self._batch_size
def set_guider(self, pipeline, guider_kwargs: Dict[str, Any]):
disable_guidance = guider_kwargs.get("disable_guidance", False)
guidance_scale = guider_kwargs.get("guidance_scale", None)
if guidance_scale is None:
raise ValueError("guidance_scale is not provided in guider_kwargs")
adaptive_projected_guidance_momentum = guider_kwargs.get("adaptive_projected_guidance_momentum", None)
adaptive_projected_guidance_rescale_factor = guider_kwargs.get(
"adaptive_projected_guidance_rescale_factor", 15.0
)
guidance_rescale = guider_kwargs.get("guidance_rescale", 0.0)
batch_size = guider_kwargs.get("batch_size", None)
if batch_size is None:
raise ValueError("batch_size is not provided in guider_kwargs")
self._adaptive_projected_guidance_momentum = adaptive_projected_guidance_momentum
self._adaptive_projected_guidance_rescale_factor = adaptive_projected_guidance_rescale_factor
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._batch_size = batch_size
self._disable_guidance = disable_guidance
if adaptive_projected_guidance_momentum is not None:
self.momentum_buffer = MomentumBuffer(adaptive_projected_guidance_momentum)
else:
self.momentum_buffer = None
self.scheduler = pipeline.scheduler
def reset_guider(self, pipeline):
pass
def maybe_update_guider(self, pipeline, timestep):
pass
def maybe_update_input(self, pipeline, cond_input):
pass
def _maybe_split_prepared_input(self, cond):
"""
Process and potentially split the conditional input for Classifier-Free Guidance (CFG).
This method handles inputs that may already have CFG applied (i.e. when `cond` is output of `prepare_input`).
It determines whether to split the input based on its batch size relative to the expected batch size.
Args:
cond (torch.Tensor): The conditional input tensor to process.
Returns:
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
- The negative conditional input (uncond_input)
- The positive conditional input (cond_input)
"""
if cond.shape[0] == self.batch_size * 2:
neg_cond = cond[0 : self.batch_size]
cond = cond[self.batch_size :]
return neg_cond, cond
elif cond.shape[0] == self.batch_size:
return cond, cond
else:
raise ValueError(f"Unsupported input shape: {cond.shape}")
def _is_prepared_input(self, cond):
"""
Check if the input is already prepared for Classifier-Free Guidance (CFG).
Args:
cond (torch.Tensor): The conditional input tensor to check.
Returns:
bool: True if the input is already prepared, False otherwise.
"""
cond_tensor = cond[0] if isinstance(cond, (list, tuple)) else cond
return cond_tensor.shape[0] == self.batch_size * 2
def prepare_input(
self,
cond_input: Union[torch.Tensor, List[torch.Tensor]],
negative_cond_input: Optional[Union[torch.Tensor, List[torch.Tensor]]] = None,
) -> Union[torch.Tensor, List[torch.Tensor]]:
"""
Prepare the input for CFG.
Args:
cond_input (Union[torch.Tensor, List[torch.Tensor]]):
The conditional input. It can be a single tensor or a
list of tensors. It must have the same length as `negative_cond_input`.
negative_cond_input (Union[torch.Tensor, List[torch.Tensor]]): The negative conditional input. It can be a
single tensor or a list of tensors. It must have the same length as `cond_input`.
Returns:
Union[torch.Tensor, List[torch.Tensor]]: The prepared input.
"""
# we check if cond_input already has CFG applied, and split if it is the case.
if self._is_prepared_input(cond_input) and self.do_classifier_free_guidance:
return cond_input
if self._is_prepared_input(cond_input) and not self.do_classifier_free_guidance:
if isinstance(cond_input, list):
negative_cond_input, cond_input = zip(*[self._maybe_split_prepared_input(cond) for cond in cond_input])
else:
negative_cond_input, cond_input = self._maybe_split_prepared_input(cond_input)
if not self._is_prepared_input(cond_input) and self.do_classifier_free_guidance and negative_cond_input is None:
raise ValueError(
"`negative_cond_input` is required when cond_input does not already contains negative conditional input"
)
if isinstance(cond_input, (list, tuple)):
if not self.do_classifier_free_guidance:
return cond_input
if len(negative_cond_input) != len(cond_input):
raise ValueError("The length of negative_cond_input and cond_input must be the same.")
prepared_input = []
for neg_cond, cond in zip(negative_cond_input, cond_input):
if neg_cond.shape[0] != cond.shape[0]:
raise ValueError("The batch size of negative_cond_input and cond_input must be the same.")
prepared_input.append(torch.cat([neg_cond, cond], dim=0))
return prepared_input
elif isinstance(cond_input, torch.Tensor):
if not self.do_classifier_free_guidance:
return cond_input
else:
return torch.cat([negative_cond_input, cond_input], dim=0)
else:
raise ValueError(f"Unsupported input type: {type(cond_input)}")
def apply_guidance(
self,
model_output: torch.Tensor,
timestep: int = None,
latents: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if not self.do_classifier_free_guidance:
return model_output
if latents is None:
raise ValueError("APG requires `latents` to convert model output to denoised prediction (x0).")
sigma = self.scheduler.sigmas[self.scheduler.step_index]
noise_pred = latents - sigma * model_output
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = self.normalized_guidance(
noise_pred_text,
noise_pred_uncond,
self.guidance_scale,
self.momentum_buffer,
self.adaptive_projected_guidance_rescale_factor,
)
noise_pred = (latents - noise_pred) / sigma
if self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
return noise_pred
Guiders = Union[CFGGuider, PAGGuider, APGGuider]

View File

@@ -0,0 +1,29 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union
from ..utils import is_torch_available
if is_torch_available():
from .adaptive_projected_guidance import AdaptiveProjectedGuidance
from .auto_guidance import AutoGuidance
from .classifier_free_guidance import ClassifierFreeGuidance
from .classifier_free_zero_star_guidance import ClassifierFreeZeroStarGuidance
from .skip_layer_guidance import SkipLayerGuidance
from .smoothed_energy_guidance import SmoothedEnergyGuidance
from .tangential_classifier_free_guidance import TangentialClassifierFreeGuidance
GuiderType = Union[AdaptiveProjectedGuidance, AutoGuidance, ClassifierFreeGuidance, ClassifierFreeZeroStarGuidance, SkipLayerGuidance, SmoothedEnergyGuidance, TangentialClassifierFreeGuidance]

View File

@@ -0,0 +1,180 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional, List, TYPE_CHECKING
import torch
from .guider_utils import BaseGuidance, rescale_noise_cfg
if TYPE_CHECKING:
from ..pipelines.modular_pipeline import BlockState
class AdaptiveProjectedGuidance(BaseGuidance):
"""
Adaptive Projected Guidance (APG): https://huggingface.co/papers/2410.02416
Args:
guidance_scale (`float`, defaults to `7.5`):
The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
deterioration of image quality.
adaptive_projected_guidance_momentum (`float`, defaults to `None`):
The momentum parameter for the adaptive projected guidance. Disabled if set to `None`.
adaptive_projected_guidance_rescale (`float`, defaults to `15.0`):
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
guidance_rescale (`float`, defaults to `0.0`):
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://huggingface.co/papers/2305.08891).
use_original_formulation (`bool`, defaults to `False`):
Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
we use the diffusers-native implementation that has been in the codebase for a long time. See
[~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details.
start (`float`, defaults to `0.0`):
The fraction of the total number of denoising steps after which guidance starts.
stop (`float`, defaults to `1.0`):
The fraction of the total number of denoising steps after which guidance stops.
"""
_input_predictions = ["pred_cond", "pred_uncond"]
def __init__(
self,
guidance_scale: float = 7.5,
adaptive_projected_guidance_momentum: Optional[float] = None,
adaptive_projected_guidance_rescale: float = 15.0,
eta: float = 1.0,
guidance_rescale: float = 0.0,
use_original_formulation: bool = False,
start: float = 0.0,
stop: float = 1.0,
):
super().__init__(start, stop)
self.guidance_scale = guidance_scale
self.adaptive_projected_guidance_momentum = adaptive_projected_guidance_momentum
self.adaptive_projected_guidance_rescale = adaptive_projected_guidance_rescale
self.eta = eta
self.guidance_rescale = guidance_rescale
self.use_original_formulation = use_original_formulation
self.momentum_buffer = None
def prepare_inputs(self, data: "BlockState") -> List["BlockState"]:
if self._step == 0:
if self.adaptive_projected_guidance_momentum is not None:
self.momentum_buffer = MomentumBuffer(self.adaptive_projected_guidance_momentum)
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
data_batches = []
for i in range(self.num_conditions):
data_batch = self._prepare_batch(self._input_fields, data, tuple_indices[i], self._input_predictions[i])
data_batches.append(data_batch)
return data_batches
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> torch.Tensor:
pred = None
if not self._is_apg_enabled():
pred = pred_cond
else:
pred = normalized_guidance(
pred_cond,
pred_uncond,
self.guidance_scale,
self.momentum_buffer,
self.eta,
self.adaptive_projected_guidance_rescale,
self.use_original_formulation,
)
if self.guidance_rescale > 0.0:
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
return pred, {}
@property
def is_conditional(self) -> bool:
return self._count_prepared == 1
@property
def num_conditions(self) -> int:
num_conditions = 1
if self._is_apg_enabled():
num_conditions += 1
return num_conditions
def _is_apg_enabled(self) -> bool:
if not self._enabled:
return False
is_within_range = True
if self._num_inference_steps is not None:
skip_start_step = int(self._start * self._num_inference_steps)
skip_stop_step = int(self._stop * self._num_inference_steps)
is_within_range = skip_start_step <= self._step < skip_stop_step
is_close = False
if self.use_original_formulation:
is_close = math.isclose(self.guidance_scale, 0.0)
else:
is_close = math.isclose(self.guidance_scale, 1.0)
return is_within_range and not is_close
class MomentumBuffer:
def __init__(self, momentum: float):
self.momentum = momentum
self.running_average = 0
def update(self, update_value: torch.Tensor):
new_average = self.momentum * self.running_average
self.running_average = update_value + new_average
def normalized_guidance(
pred_cond: torch.Tensor,
pred_uncond: torch.Tensor,
guidance_scale: float,
momentum_buffer: Optional[MomentumBuffer] = None,
eta: float = 1.0,
norm_threshold: float = 0.0,
use_original_formulation: bool = False,
):
diff = pred_cond - pred_uncond
dim = [-i for i in range(1, len(diff.shape))]
if momentum_buffer is not None:
momentum_buffer.update(diff)
diff = momentum_buffer.running_average
if norm_threshold > 0:
ones = torch.ones_like(diff)
diff_norm = diff.norm(p=2, dim=dim, keepdim=True)
scale_factor = torch.minimum(ones, norm_threshold / diff_norm)
diff = diff * scale_factor
v0, v1 = diff.double(), pred_cond.double()
v1 = torch.nn.functional.normalize(v1, dim=dim)
v0_parallel = (v0 * v1).sum(dim=dim, keepdim=True) * v1
v0_orthogonal = v0 - v0_parallel
diff_parallel, diff_orthogonal = v0_parallel.type_as(diff), v0_orthogonal.type_as(diff)
normalized_update = diff_orthogonal + eta * diff_parallel
pred = pred_cond if use_original_formulation else pred_uncond
pred = pred + guidance_scale * normalized_update
return pred

View File

@@ -0,0 +1,173 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Union, TYPE_CHECKING
import torch
from ..hooks import HookRegistry, LayerSkipConfig
from ..hooks.layer_skip import _apply_layer_skip_hook
from .guider_utils import BaseGuidance, rescale_noise_cfg
if TYPE_CHECKING:
from ..pipelines.modular_pipeline import BlockState
class AutoGuidance(BaseGuidance):
"""
AutoGuidance: https://huggingface.co/papers/2406.02507
Args:
guidance_scale (`float`, defaults to `7.5`):
The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
deterioration of image quality.
auto_guidance_layers (`int` or `List[int]`, *optional*):
The layer indices to apply skip layer guidance to. Can be a single integer or a list of integers. If not
provided, `skip_layer_config` must be provided.
auto_guidance_config (`LayerSkipConfig` or `List[LayerSkipConfig]`, *optional*):
The configuration for the skip layer guidance. Can be a single `LayerSkipConfig` or a list of
`LayerSkipConfig`. If not provided, `skip_layer_guidance_layers` must be provided.
dropout (`float`, *optional*):
The dropout probability for autoguidance on the enabled skip layers (either with `auto_guidance_layers` or
`auto_guidance_config`). If not provided, the dropout probability will be set to 1.0.
guidance_rescale (`float`, defaults to `0.0`):
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://huggingface.co/papers/2305.08891).
use_original_formulation (`bool`, defaults to `False`):
Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
we use the diffusers-native implementation that has been in the codebase for a long time. See
[~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details.
start (`float`, defaults to `0.0`):
The fraction of the total number of denoising steps after which guidance starts.
stop (`float`, defaults to `1.0`):
The fraction of the total number of denoising steps after which guidance stops.
"""
_input_predictions = ["pred_cond", "pred_uncond"]
def __init__(
self,
guidance_scale: float = 7.5,
auto_guidance_layers: Optional[Union[int, List[int]]] = None,
auto_guidance_config: Union[LayerSkipConfig, List[LayerSkipConfig]] = None,
dropout: Optional[float] = None,
guidance_rescale: float = 0.0,
use_original_formulation: bool = False,
start: float = 0.0,
stop: float = 1.0,
):
super().__init__(start, stop)
self.guidance_scale = guidance_scale
self.auto_guidance_layers = auto_guidance_layers
self.auto_guidance_config = auto_guidance_config
self.dropout = dropout
self.guidance_rescale = guidance_rescale
self.use_original_formulation = use_original_formulation
if auto_guidance_layers is None and auto_guidance_config is None:
raise ValueError(
"Either `auto_guidance_layers` or `auto_guidance_config` must be provided to enable Skip Layer Guidance."
)
if auto_guidance_layers is not None and auto_guidance_config is not None:
raise ValueError("Only one of `auto_guidance_layers` or `auto_guidance_config` can be provided.")
if (dropout is None and auto_guidance_layers is not None) or (dropout is not None and auto_guidance_layers is None):
raise ValueError("`dropout` must be provided if `auto_guidance_layers` is provided.")
if auto_guidance_layers is not None:
if isinstance(auto_guidance_layers, int):
auto_guidance_layers = [auto_guidance_layers]
if not isinstance(auto_guidance_layers, list):
raise ValueError(
f"Expected `auto_guidance_layers` to be an int or a list of ints, but got {type(auto_guidance_layers)}."
)
auto_guidance_config = [LayerSkipConfig(layer, fqn="auto", dropout=dropout) for layer in auto_guidance_layers]
if isinstance(auto_guidance_config, LayerSkipConfig):
auto_guidance_config = [auto_guidance_config]
if not isinstance(auto_guidance_config, list):
raise ValueError(
f"Expected `auto_guidance_config` to be a LayerSkipConfig or a list of LayerSkipConfig, but got {type(auto_guidance_config)}."
)
self.auto_guidance_config = auto_guidance_config
self._auto_guidance_hook_names = [f"AutoGuidance_{i}" for i in range(len(self.auto_guidance_config))]
def prepare_models(self, denoiser: torch.nn.Module) -> None:
self._count_prepared += 1
if self._is_ag_enabled() and self.is_unconditional:
for name, config in zip(self._auto_guidance_hook_names, self.auto_guidance_config):
_apply_layer_skip_hook(denoiser, config, name=name)
def cleanup_models(self, denoiser: torch.nn.Module) -> None:
if self._is_ag_enabled() and self.is_unconditional:
for name in self._auto_guidance_hook_names:
registry = HookRegistry.check_if_exists_or_initialize(denoiser)
registry.remove_hook(name, recurse=True)
def prepare_inputs(self, data: "BlockState") -> List["BlockState"]:
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
data_batches = []
for i in range(self.num_conditions):
data_batch = self._prepare_batch(self._input_fields, data, tuple_indices[i], self._input_predictions[i])
data_batches.append(data_batch)
return data_batches
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> torch.Tensor:
pred = None
if not self._is_ag_enabled():
pred = pred_cond
else:
shift = pred_cond - pred_uncond
pred = pred_cond if self.use_original_formulation else pred_uncond
pred = pred + self.guidance_scale * shift
if self.guidance_rescale > 0.0:
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
return pred, {}
@property
def is_conditional(self) -> bool:
return self._count_prepared == 1
@property
def num_conditions(self) -> int:
num_conditions = 1
if self._is_ag_enabled():
num_conditions += 1
return num_conditions
def _is_ag_enabled(self) -> bool:
if not self._enabled:
return False
is_within_range = True
if self._num_inference_steps is not None:
skip_start_step = int(self._start * self._num_inference_steps)
skip_stop_step = int(self._stop * self._num_inference_steps)
is_within_range = skip_start_step <= self._step < skip_stop_step
is_close = False
if self.use_original_formulation:
is_close = math.isclose(self.guidance_scale, 0.0)
else:
is_close = math.isclose(self.guidance_scale, 1.0)
return is_within_range and not is_close

View File

@@ -0,0 +1,128 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional, List, TYPE_CHECKING
import torch
from .guider_utils import BaseGuidance, rescale_noise_cfg
if TYPE_CHECKING:
from ..pipelines.modular_pipeline import BlockState
class ClassifierFreeGuidance(BaseGuidance):
"""
Classifier-free guidance (CFG): https://huggingface.co/papers/2207.12598
CFG is a technique used to improve generation quality and condition-following in diffusion models. It works by
jointly training a model on both conditional and unconditional data, and using a weighted sum of the two during
inference. This allows the model to tradeoff between generation quality and sample diversity.
The original paper proposes scaling and shifting the conditional distribution based on the difference between
conditional and unconditional predictions. [x_pred = x_cond + scale * (x_cond - x_uncond)]
Diffusers implemented the scaling and shifting on the unconditional prediction instead based on the [Imagen
paper](https://huggingface.co/papers/2205.11487), which is equivalent to what the original paper proposed in
theory. [x_pred = x_uncond + scale * (x_cond - x_uncond)]
The intution behind the original formulation can be thought of as moving the conditional distribution estimates
further away from the unconditional distribution estimates, while the diffusers-native implementation can be
thought of as moving the unconditional distribution towards the conditional distribution estimates to get rid of
the unconditional predictions (usually negative features like "bad quality, bad anotomy, watermarks", etc.)
The `use_original_formulation` argument can be set to `True` to use the original CFG formulation mentioned in the
paper. By default, we use the diffusers-native implementation that has been in the codebase for a long time.
Args:
guidance_scale (`float`, defaults to `7.5`):
The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
deterioration of image quality.
guidance_rescale (`float`, defaults to `0.0`):
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://huggingface.co/papers/2305.08891).
use_original_formulation (`bool`, defaults to `False`):
Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
we use the diffusers-native implementation that has been in the codebase for a long time. See
[~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details.
start (`float`, defaults to `0.0`):
The fraction of the total number of denoising steps after which guidance starts.
stop (`float`, defaults to `1.0`):
The fraction of the total number of denoising steps after which guidance stops.
"""
_input_predictions = ["pred_cond", "pred_uncond"]
def __init__(
self, guidance_scale: float = 7.5, guidance_rescale: float = 0.0, use_original_formulation: bool = False, start: float = 0.0, stop: float = 1.0
):
super().__init__(start, stop)
self.guidance_scale = guidance_scale
self.guidance_rescale = guidance_rescale
self.use_original_formulation = use_original_formulation
def prepare_inputs(self, data: "BlockState") -> List["BlockState"]:
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
data_batches = []
for i in range(self.num_conditions):
data_batch = self._prepare_batch(self._input_fields, data, tuple_indices[i], self._input_predictions[i])
data_batches.append(data_batch)
return data_batches
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> torch.Tensor:
pred = None
if not self._is_cfg_enabled():
pred = pred_cond
else:
shift = pred_cond - pred_uncond
pred = pred_cond if self.use_original_formulation else pred_uncond
pred = pred + self.guidance_scale * shift
if self.guidance_rescale > 0.0:
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
return pred, {}
@property
def is_conditional(self) -> bool:
return self._count_prepared == 1
@property
def num_conditions(self) -> int:
num_conditions = 1
if self._is_cfg_enabled():
num_conditions += 1
return num_conditions
def _is_cfg_enabled(self) -> bool:
if not self._enabled:
return False
is_within_range = True
if self._num_inference_steps is not None:
skip_start_step = int(self._start * self._num_inference_steps)
skip_stop_step = int(self._stop * self._num_inference_steps)
is_within_range = skip_start_step <= self._step < skip_stop_step
is_close = False
if self.use_original_formulation:
is_close = math.isclose(self.guidance_scale, 0.0)
else:
is_close = math.isclose(self.guidance_scale, 1.0)
return is_within_range and not is_close

View File

@@ -0,0 +1,144 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional, List, TYPE_CHECKING
import torch
from .guider_utils import BaseGuidance, rescale_noise_cfg
if TYPE_CHECKING:
from ..pipelines.modular_pipeline import BlockState
class ClassifierFreeZeroStarGuidance(BaseGuidance):
"""
Classifier-free Zero* (CFG-Zero*): https://huggingface.co/papers/2503.18886
This is an implementation of the Classifier-Free Zero* guidance technique, which is a variant of classifier-free
guidance. It proposes zero initialization of the noise predictions for the first few steps of the diffusion
process, and also introduces an optimal rescaling factor for the noise predictions, which can help in improving the
quality of generated images.
The authors of the paper suggest setting zero initialization in the first 4% of the inference steps.
Args:
guidance_scale (`float`, defaults to `7.5`):
The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
deterioration of image quality.
zero_init_steps (`int`, defaults to `1`):
The number of inference steps for which the noise predictions are zeroed out (see Section 4.2).
guidance_rescale (`float`, defaults to `0.0`):
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://huggingface.co/papers/2305.08891).
use_original_formulation (`bool`, defaults to `False`):
Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
we use the diffusers-native implementation that has been in the codebase for a long time. See
[~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details.
start (`float`, defaults to `0.01`):
The fraction of the total number of denoising steps after which guidance starts.
stop (`float`, defaults to `0.2`):
The fraction of the total number of denoising steps after which guidance stops.
"""
_input_predictions = ["pred_cond", "pred_uncond"]
def __init__(
self,
guidance_scale: float = 7.5,
zero_init_steps: int = 1,
guidance_rescale: float = 0.0,
use_original_formulation: bool = False,
start: float = 0.0,
stop: float = 1.0,
):
super().__init__(start, stop)
self.guidance_scale = guidance_scale
self.zero_init_steps = zero_init_steps
self.guidance_rescale = guidance_rescale
self.use_original_formulation = use_original_formulation
def prepare_inputs(self, data: "BlockState") -> List["BlockState"]:
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
data_batches = []
for i in range(self.num_conditions):
data_batch = self._prepare_batch(self._input_fields, data, tuple_indices[i], self._input_predictions[i])
data_batches.append(data_batch)
return data_batches
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> torch.Tensor:
pred = None
if self._step < self.zero_init_steps:
pred = torch.zeros_like(pred_cond)
elif not self._is_cfg_enabled():
pred = pred_cond
else:
pred_cond_flat = pred_cond.flatten(1)
pred_uncond_flat = pred_uncond.flatten(1)
alpha = cfg_zero_star_scale(pred_cond_flat, pred_uncond_flat)
alpha = alpha.view(-1, *(1,) * (len(pred_cond.shape) - 1))
pred_uncond = pred_uncond * alpha
shift = pred_cond - pred_uncond
pred = pred_cond if self.use_original_formulation else pred_uncond
pred = pred + self.guidance_scale * shift
if self.guidance_rescale > 0.0:
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
return pred, {}
@property
def is_conditional(self) -> bool:
return self._count_prepared == 1
@property
def num_conditions(self) -> int:
num_conditions = 1
if self._is_cfg_enabled():
num_conditions += 1
return num_conditions
def _is_cfg_enabled(self) -> bool:
if not self._enabled:
return False
is_within_range = True
if self._num_inference_steps is not None:
skip_start_step = int(self._start * self._num_inference_steps)
skip_stop_step = int(self._stop * self._num_inference_steps)
is_within_range = skip_start_step <= self._step < skip_stop_step
is_close = False
if self.use_original_formulation:
is_close = math.isclose(self.guidance_scale, 0.0)
else:
is_close = math.isclose(self.guidance_scale, 1.0)
return is_within_range and not is_close
def cfg_zero_star_scale(cond: torch.Tensor, uncond: torch.Tensor, eps: float = 1e-8) -> torch.Tensor:
cond_dtype = cond.dtype
cond = cond.float()
uncond = uncond.float()
dot_product = torch.sum(cond * uncond, dim=1, keepdim=True)
squared_norm = torch.sum(uncond**2, dim=1, keepdim=True) + eps
# st_star = v_cond^T * v_uncond / ||v_uncond||^2
scale = dot_product / squared_norm
return scale.to(dtype=cond_dtype)

View File

@@ -0,0 +1,215 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Union
import torch
from ..utils import get_logger
if TYPE_CHECKING:
from ..pipelines.modular_pipeline import BlockState
logger = get_logger(__name__) # pylint: disable=invalid-name
class BaseGuidance:
r"""Base class providing the skeleton for implementing guidance techniques."""
_input_predictions = None
_identifier_key = "__guidance_identifier__"
def __init__(self, start: float = 0.0, stop: float = 1.0):
self._start = start
self._stop = stop
self._step: int = None
self._num_inference_steps: int = None
self._timestep: torch.LongTensor = None
self._count_prepared = 0
self._input_fields: Dict[str, Union[str, Tuple[str, str]]] = None
self._enabled = True
if not (0.0 <= start < 1.0):
raise ValueError(
f"Expected `start` to be between 0.0 and 1.0, but got {start}."
)
if not (start <= stop <= 1.0):
raise ValueError(
f"Expected `stop` to be between {start} and 1.0, but got {stop}."
)
if self._input_predictions is None or not isinstance(self._input_predictions, list):
raise ValueError(
"`_input_predictions` must be a list of required prediction names for the guidance technique."
)
def disable(self):
self._enabled = False
def enable(self):
self._enabled = True
def set_state(self, step: int, num_inference_steps: int, timestep: torch.LongTensor) -> None:
self._step = step
self._num_inference_steps = num_inference_steps
self._timestep = timestep
self._count_prepared = 0
def set_input_fields(self, **kwargs: Dict[str, Union[str, Tuple[str, str]]]) -> None:
"""
Set the input fields for the guidance technique. The input fields are used to specify the names of the
returned attributes containing the prepared data after `prepare_inputs` is called. The prepared data is
obtained from the values of the provided keyword arguments to this method.
Args:
**kwargs (`Dict[str, Union[str, Tuple[str, str]]]`):
A dictionary where the keys are the names of the fields that will be used to store the data once
it is prepared with `prepare_inputs`. The values can be either a string or a tuple of length 2,
which is used to look up the required data provided for preparation.
If a string is provided, it will be used as the conditional data (or unconditional if used with
a guidance method that requires it). If a tuple of length 2 is provided, the first element must
be the conditional data identifier and the second element must be the unconditional data identifier
or None.
Example:
```
data = {"prompt_embeds": <some tensor>, "negative_prompt_embeds": <some tensor>, "latents": <some tensor>}
BaseGuidance.set_input_fields(
latents="latents",
prompt_embeds=("prompt_embeds", "negative_prompt_embeds"),
)
```
"""
for key, value in kwargs.items():
is_string = isinstance(value, str)
is_tuple_of_str_with_len_2 = isinstance(value, tuple) and len(value) == 2 and all(isinstance(v, str) for v in value)
if not (is_string or is_tuple_of_str_with_len_2):
raise ValueError(
f"Expected `set_input_fields` to be called with a string or a tuple of string with length 2, but got {type(value)} for key {key}."
)
self._input_fields = kwargs
def prepare_models(self, denoiser: torch.nn.Module) -> None:
"""
Prepares the models for the guidance technique on a given batch of data. This method should be overridden in
subclasses to implement specific model preparation logic.
"""
self._count_prepared += 1
def cleanup_models(self, denoiser: torch.nn.Module) -> None:
"""
Cleans up the models for the guidance technique after a given batch of data. This method should be overridden in
subclasses to implement specific model cleanup logic. It is useful for removing any hooks or other stateful
modifications made during `prepare_models`.
"""
pass
def prepare_inputs(self, data: "BlockState") -> List["BlockState"]:
raise NotImplementedError("BaseGuidance::prepare_inputs must be implemented in subclasses.")
def __call__(self, data: List["BlockState"]) -> Any:
if not all(hasattr(d, "noise_pred") for d in data):
raise ValueError("Expected all data to have `noise_pred` attribute.")
if len(data) != self.num_conditions:
raise ValueError(
f"Expected {self.num_conditions} data items, but got {len(data)}. Please check the input data."
)
forward_inputs = {getattr(d, self._identifier_key): d.noise_pred for d in data}
return self.forward(**forward_inputs)
def forward(self, *args, **kwargs) -> Any:
raise NotImplementedError("BaseGuidance::forward must be implemented in subclasses.")
@property
def is_conditional(self) -> bool:
raise NotImplementedError("BaseGuidance::is_conditional must be implemented in subclasses.")
@property
def is_unconditional(self) -> bool:
return not self.is_conditional
@property
def num_conditions(self) -> int:
raise NotImplementedError("BaseGuidance::num_conditions must be implemented in subclasses.")
@classmethod
def _prepare_batch(cls, input_fields: Dict[str, Union[str, Tuple[str, str]]], data: "BlockState", tuple_index: int, identifier: str) -> "BlockState":
"""
Prepares a batch of data for the guidance technique. This method is used in the `prepare_inputs` method of
the `BaseGuidance` class. It prepares the batch based on the provided tuple index.
Args:
input_fields (`Dict[str, Union[str, Tuple[str, str]]]`):
A dictionary where the keys are the names of the fields that will be used to store the data once
it is prepared with `prepare_inputs`. The values can be either a string or a tuple of length 2,
which is used to look up the required data provided for preparation.
If a string is provided, it will be used as the conditional data (or unconditional if used with
a guidance method that requires it). If a tuple of length 2 is provided, the first element must
be the conditional data identifier and the second element must be the unconditional data identifier
or None.
data (`BlockState`):
The input data to be prepared.
tuple_index (`int`):
The index to use when accessing input fields that are tuples.
Returns:
`BlockState`: The prepared batch of data.
"""
from ..pipelines.modular_pipeline import BlockState
if input_fields is None:
raise ValueError("Input fields have not been set. Please call `set_input_fields` before preparing inputs.")
data_batch = {}
for key, value in input_fields.items():
try:
if isinstance(value, str):
data_batch[key] = getattr(data, value)
elif isinstance(value, tuple):
data_batch[key] = getattr(data, value[tuple_index])
else:
# We've already checked that value is a string or a tuple of strings with length 2
pass
except AttributeError:
raise ValueError(f"Expected `data` to have attribute(s) {value}, but it does not. Please check the input data.")
data_batch[cls._identifier_key] = identifier
return BlockState(**data_batch)
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
r"""
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf).
Args:
noise_cfg (`torch.Tensor`):
The predicted noise tensor for the guided diffusion process.
noise_pred_text (`torch.Tensor`):
The predicted noise tensor for the text-guided diffusion process.
guidance_rescale (`float`, *optional*, defaults to 0.0):
A rescale factor applied to the noise predictions.
Returns:
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg

View File

@@ -0,0 +1,247 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Union, TYPE_CHECKING
import torch
from ..hooks import HookRegistry, LayerSkipConfig
from ..hooks.layer_skip import _apply_layer_skip_hook
from .guider_utils import BaseGuidance, rescale_noise_cfg
if TYPE_CHECKING:
from ..pipelines.modular_pipeline import BlockState
class SkipLayerGuidance(BaseGuidance):
"""
Skip Layer Guidance (SLG): https://github.com/Stability-AI/sd3.5
Spatio-Temporal Guidance (STG): https://huggingface.co/papers/2411.18664
SLG was introduced by StabilityAI for improving structure and anotomy coherence in generated images. It works by
skipping the forward pass of specified transformer blocks during the denoising process on an additional conditional
batch of data, apart from the conditional and unconditional batches already used in CFG
([~guiders.classifier_free_guidance.ClassifierFreeGuidance]), and then scaling and shifting the CFG predictions
based on the difference between conditional without skipping and conditional with skipping predictions.
The intution behind SLG can be thought of as moving the CFG predicted distribution estimates further away from
worse versions of the conditional distribution estimates (because skipping layers is equivalent to using a worse
version of the model for the conditional prediction).
STG is an improvement and follow-up work combining ideas from SLG, PAG and similar techniques for improving
generation quality in video diffusion models.
Additional reading:
- [Guiding a Diffusion Model with a Bad Version of Itself](https://huggingface.co/papers/2406.02507)
The values for `skip_layer_guidance_scale`, `skip_layer_guidance_start`, and `skip_layer_guidance_stop` are
defaulted to the recommendations by StabilityAI for Stable Diffusion 3.5 Medium.
Args:
guidance_scale (`float`, defaults to `7.5`):
The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
deterioration of image quality.
skip_layer_guidance_scale (`float`, defaults to `2.8`):
The scale parameter for skip layer guidance. Anatomy and structure coherence may improve with higher
values, but it may also lead to overexposure and saturation.
skip_layer_guidance_start (`float`, defaults to `0.01`):
The fraction of the total number of denoising steps after which skip layer guidance starts.
skip_layer_guidance_stop (`float`, defaults to `0.2`):
The fraction of the total number of denoising steps after which skip layer guidance stops.
skip_layer_guidance_layers (`int` or `List[int]`, *optional*):
The layer indices to apply skip layer guidance to. Can be a single integer or a list of integers. If not
provided, `skip_layer_config` must be provided. The recommended values are `[7, 8, 9]` for Stable Diffusion
3.5 Medium.
skip_layer_config (`LayerSkipConfig` or `List[LayerSkipConfig]`, *optional*):
The configuration for the skip layer guidance. Can be a single `LayerSkipConfig` or a list of
`LayerSkipConfig`. If not provided, `skip_layer_guidance_layers` must be provided.
guidance_rescale (`float`, defaults to `0.0`):
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://huggingface.co/papers/2305.08891).
use_original_formulation (`bool`, defaults to `False`):
Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
we use the diffusers-native implementation that has been in the codebase for a long time. See
[~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details.
start (`float`, defaults to `0.01`):
The fraction of the total number of denoising steps after which guidance starts.
stop (`float`, defaults to `0.2`):
The fraction of the total number of denoising steps after which guidance stops.
"""
_input_predictions = ["pred_cond", "pred_uncond", "pred_cond_skip"]
def __init__(
self,
guidance_scale: float = 7.5,
skip_layer_guidance_scale: float = 2.8,
skip_layer_guidance_start: float = 0.01,
skip_layer_guidance_stop: float = 0.2,
skip_layer_guidance_layers: Optional[Union[int, List[int]]] = None,
skip_layer_config: Union[LayerSkipConfig, List[LayerSkipConfig]] = None,
guidance_rescale: float = 0.0,
use_original_formulation: bool = False,
start: float = 0.0,
stop: float = 1.0,
):
super().__init__(start, stop)
self.guidance_scale = guidance_scale
self.skip_layer_guidance_scale = skip_layer_guidance_scale
self.skip_layer_guidance_start = skip_layer_guidance_start
self.skip_layer_guidance_stop = skip_layer_guidance_stop
self.guidance_rescale = guidance_rescale
self.use_original_formulation = use_original_formulation
if not (0.0 <= skip_layer_guidance_start < 1.0):
raise ValueError(
f"Expected `skip_layer_guidance_start` to be between 0.0 and 1.0, but got {skip_layer_guidance_start}."
)
if not (skip_layer_guidance_start <= skip_layer_guidance_stop <= 1.0):
raise ValueError(
f"Expected `skip_layer_guidance_stop` to be between 0.0 and 1.0, but got {skip_layer_guidance_stop}."
)
if skip_layer_guidance_layers is None and skip_layer_config is None:
raise ValueError(
"Either `skip_layer_guidance_layers` or `skip_layer_config` must be provided to enable Skip Layer Guidance."
)
if skip_layer_guidance_layers is not None and skip_layer_config is not None:
raise ValueError("Only one of `skip_layer_guidance_layers` or `skip_layer_config` can be provided.")
if skip_layer_guidance_layers is not None:
if isinstance(skip_layer_guidance_layers, int):
skip_layer_guidance_layers = [skip_layer_guidance_layers]
if not isinstance(skip_layer_guidance_layers, list):
raise ValueError(
f"Expected `skip_layer_guidance_layers` to be an int or a list of ints, but got {type(skip_layer_guidance_layers)}."
)
skip_layer_config = [LayerSkipConfig(layer, fqn="auto") for layer in skip_layer_guidance_layers]
if isinstance(skip_layer_config, LayerSkipConfig):
skip_layer_config = [skip_layer_config]
if not isinstance(skip_layer_config, list):
raise ValueError(
f"Expected `skip_layer_config` to be a LayerSkipConfig or a list of LayerSkipConfig, but got {type(skip_layer_config)}."
)
self.skip_layer_config = skip_layer_config
self._skip_layer_hook_names = [f"SkipLayerGuidance_{i}" for i in range(len(self.skip_layer_config))]
def prepare_models(self, denoiser: torch.nn.Module) -> None:
self._count_prepared += 1
if self._is_slg_enabled() and self.is_conditional and self._count_prepared > 1:
for name, config in zip(self._skip_layer_hook_names, self.skip_layer_config):
_apply_layer_skip_hook(denoiser, config, name=name)
def cleanup_models(self, denoiser: torch.nn.Module) -> None:
if self._is_slg_enabled() and self.is_conditional and self._count_prepared > 1:
registry = HookRegistry.check_if_exists_or_initialize(denoiser)
# Remove the hooks after inference
for hook_name in self._skip_layer_hook_names:
registry.remove_hook(hook_name, recurse=True)
def prepare_inputs(self, data: "BlockState") -> List["BlockState"]:
if self.num_conditions == 1:
tuple_indices = [0]
input_predictions = ["pred_cond"]
elif self.num_conditions == 2:
tuple_indices = [0, 1]
input_predictions = ["pred_cond", "pred_uncond"] if self._is_cfg_enabled() else ["pred_cond", "pred_cond_skip"]
else:
tuple_indices = [0, 1, 0]
input_predictions = ["pred_cond", "pred_uncond", "pred_cond_skip"]
data_batches = []
for i in range(self.num_conditions):
data_batch = self._prepare_batch(self._input_fields, data, tuple_indices[i], input_predictions[i])
data_batches.append(data_batch)
return data_batches
def forward(
self,
pred_cond: torch.Tensor,
pred_uncond: Optional[torch.Tensor] = None,
pred_cond_skip: Optional[torch.Tensor] = None,
) -> torch.Tensor:
pred = None
if not self._is_cfg_enabled() and not self._is_slg_enabled():
pred = pred_cond
elif not self._is_cfg_enabled():
shift = pred_cond - pred_cond_skip
pred = pred_cond if self.use_original_formulation else pred_cond_skip
pred = pred + self.skip_layer_guidance_scale * shift
elif not self._is_slg_enabled():
shift = pred_cond - pred_uncond
pred = pred_cond if self.use_original_formulation else pred_uncond
pred = pred + self.guidance_scale * shift
else:
shift = pred_cond - pred_uncond
shift_skip = pred_cond - pred_cond_skip
pred = pred_cond if self.use_original_formulation else pred_uncond
pred = pred + self.guidance_scale * shift + self.skip_layer_guidance_scale * shift_skip
if self.guidance_rescale > 0.0:
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
return pred, {}
@property
def is_conditional(self) -> bool:
return self._count_prepared == 1 or self._count_prepared == 3
@property
def num_conditions(self) -> int:
num_conditions = 1
if self._is_cfg_enabled():
num_conditions += 1
if self._is_slg_enabled():
num_conditions += 1
return num_conditions
def _is_cfg_enabled(self) -> bool:
if not self._enabled:
return False
is_within_range = True
if self._num_inference_steps is not None:
skip_start_step = int(self._start * self._num_inference_steps)
skip_stop_step = int(self._stop * self._num_inference_steps)
is_within_range = skip_start_step <= self._step < skip_stop_step
is_close = False
if self.use_original_formulation:
is_close = math.isclose(self.guidance_scale, 0.0)
else:
is_close = math.isclose(self.guidance_scale, 1.0)
return is_within_range and not is_close
def _is_slg_enabled(self) -> bool:
if not self._enabled:
return False
is_within_range = True
if self._num_inference_steps is not None:
skip_start_step = int(self.skip_layer_guidance_start * self._num_inference_steps)
skip_stop_step = int(self.skip_layer_guidance_stop * self._num_inference_steps)
is_within_range = skip_start_step < self._step < skip_stop_step
is_zero = math.isclose(self.skip_layer_guidance_scale, 0.0)
return is_within_range and not is_zero

View File

@@ -0,0 +1,240 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Union, TYPE_CHECKING
import torch
from ..hooks import HookRegistry
from ..hooks.smoothed_energy_guidance_utils import SmoothedEnergyGuidanceConfig, _apply_smoothed_energy_guidance_hook
from .guider_utils import BaseGuidance, rescale_noise_cfg
if TYPE_CHECKING:
from ..pipelines.modular_pipeline import BlockState
class SmoothedEnergyGuidance(BaseGuidance):
"""
Smoothed Energy Guidance (SEG): https://huggingface.co/papers/2408.00760
SEG is only supported as an experimental prototype feature for now, so the implementation may be modified
in the future without warning or guarantee of reproducibility. This implementation assumes:
- Generated images are square (height == width)
- The model does not combine different modalities together (e.g., text and image latent streams are
not combined together such as Flux)
Args:
guidance_scale (`float`, defaults to `7.5`):
The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
deterioration of image quality.
seg_guidance_scale (`float`, defaults to `3.0`):
The scale parameter for smoothed energy guidance. Anatomy and structure coherence may improve with higher
values, but it may also lead to overexposure and saturation.
seg_blur_sigma (`float`, defaults to `9999999.0`):
The amount by which we blur the attention weights. Setting this value greater than 9999.0 results in
infinite blur, which means uniform queries. Controlling it exponentially is empirically effective.
seg_blur_threshold_inf (`float`, defaults to `9999.0`):
The threshold above which the blur is considered infinite.
seg_guidance_start (`float`, defaults to `0.0`):
The fraction of the total number of denoising steps after which smoothed energy guidance starts.
seg_guidance_stop (`float`, defaults to `1.0`):
The fraction of the total number of denoising steps after which smoothed energy guidance stops.
seg_guidance_layers (`int` or `List[int]`, *optional*):
The layer indices to apply smoothed energy guidance to. Can be a single integer or a list of integers. If not
provided, `seg_guidance_config` must be provided. The recommended values are `[7, 8, 9]` for Stable Diffusion
3.5 Medium.
seg_guidance_config (`SmoothedEnergyGuidanceConfig` or `List[SmoothedEnergyGuidanceConfig]`, *optional*):
The configuration for the smoothed energy layer guidance. Can be a single `SmoothedEnergyGuidanceConfig` or a list of
`SmoothedEnergyGuidanceConfig`. If not provided, `seg_guidance_layers` must be provided.
guidance_rescale (`float`, defaults to `0.0`):
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://huggingface.co/papers/2305.08891).
use_original_formulation (`bool`, defaults to `False`):
Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
we use the diffusers-native implementation that has been in the codebase for a long time. See
[~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details.
start (`float`, defaults to `0.01`):
The fraction of the total number of denoising steps after which guidance starts.
stop (`float`, defaults to `0.2`):
The fraction of the total number of denoising steps after which guidance stops.
"""
_input_predictions = ["pred_cond", "pred_uncond", "pred_cond_seg"]
def __init__(
self,
guidance_scale: float = 7.5,
seg_guidance_scale: float = 2.8,
seg_blur_sigma: float = 9999999.0,
seg_blur_threshold_inf: float = 9999.0,
seg_guidance_start: float = 0.0,
seg_guidance_stop: float = 1.0,
seg_guidance_layers: Optional[Union[int, List[int]]] = None,
seg_guidance_config: Union[SmoothedEnergyGuidanceConfig, List[SmoothedEnergyGuidanceConfig]] = None,
guidance_rescale: float = 0.0,
use_original_formulation: bool = False,
start: float = 0.0,
stop: float = 1.0,
):
super().__init__(start, stop)
self.guidance_scale = guidance_scale
self.seg_guidance_scale = seg_guidance_scale
self.seg_blur_sigma = seg_blur_sigma
self.seg_blur_threshold_inf = seg_blur_threshold_inf
self.seg_guidance_start = seg_guidance_start
self.seg_guidance_stop = seg_guidance_stop
self.guidance_rescale = guidance_rescale
self.use_original_formulation = use_original_formulation
if not (0.0 <= seg_guidance_start < 1.0):
raise ValueError(
f"Expected `seg_guidance_start` to be between 0.0 and 1.0, but got {seg_guidance_start}."
)
if not (seg_guidance_start <= seg_guidance_stop <= 1.0):
raise ValueError(
f"Expected `seg_guidance_stop` to be between 0.0 and 1.0, but got {seg_guidance_stop}."
)
if seg_guidance_layers is None and seg_guidance_config is None:
raise ValueError(
"Either `seg_guidance_layers` or `seg_guidance_config` must be provided to enable Smoothed Energy Guidance."
)
if seg_guidance_layers is not None and seg_guidance_config is not None:
raise ValueError("Only one of `seg_guidance_layers` or `seg_guidance_config` can be provided.")
if seg_guidance_layers is not None:
if isinstance(seg_guidance_layers, int):
seg_guidance_layers = [seg_guidance_layers]
if not isinstance(seg_guidance_layers, list):
raise ValueError(
f"Expected `seg_guidance_layers` to be an int or a list of ints, but got {type(seg_guidance_layers)}."
)
seg_guidance_config = [SmoothedEnergyGuidanceConfig(layer, fqn="auto") for layer in seg_guidance_layers]
if isinstance(seg_guidance_config, SmoothedEnergyGuidanceConfig):
seg_guidance_config = [seg_guidance_config]
if not isinstance(seg_guidance_config, list):
raise ValueError(
f"Expected `seg_guidance_config` to be a SmoothedEnergyGuidanceConfig or a list of SmoothedEnergyGuidanceConfig, but got {type(seg_guidance_config)}."
)
self.seg_guidance_config = seg_guidance_config
self._seg_layer_hook_names = [f"SmoothedEnergyGuidance_{i}" for i in range(len(self.seg_guidance_config))]
def prepare_models(self, denoiser: torch.nn.Module) -> None:
if self._is_seg_enabled() and self.is_conditional and self._count_prepared > 1:
for name, config in zip(self._seg_layer_hook_names, self.seg_guidance_config):
_apply_smoothed_energy_guidance_hook(denoiser, config, self.seg_blur_sigma, name=name)
def cleanup_models(self, denoiser: torch.nn.Module):
if self._is_seg_enabled() and self.is_conditional and self._count_prepared > 1:
registry = HookRegistry.check_if_exists_or_initialize(denoiser)
# Remove the hooks after inference
for hook_name in self._seg_layer_hook_names:
registry.remove_hook(hook_name, recurse=True)
def prepare_inputs(self, data: "BlockState") -> List["BlockState"]:
if self.num_conditions == 1:
tuple_indices = [0]
input_predictions = ["pred_cond"]
elif self.num_conditions == 2:
tuple_indices = [0, 1]
input_predictions = ["pred_cond", "pred_uncond"] if self._is_cfg_enabled() else ["pred_cond", "pred_cond_seg"]
else:
tuple_indices = [0, 1, 0]
input_predictions = ["pred_cond", "pred_uncond", "pred_cond_seg"]
data_batches = []
for i in range(self.num_conditions):
data_batch = self._prepare_batch(self._input_fields, data, tuple_indices[i], input_predictions[i])
data_batches.append(data_batch)
return data_batches
def forward(
self,
pred_cond: torch.Tensor,
pred_uncond: Optional[torch.Tensor] = None,
pred_cond_seg: Optional[torch.Tensor] = None,
) -> torch.Tensor:
pred = None
if not self._is_cfg_enabled() and not self._is_seg_enabled():
pred = pred_cond
elif not self._is_cfg_enabled():
shift = pred_cond - pred_cond_seg
pred = pred_cond if self.use_original_formulation else pred_cond_seg
pred = pred + self.seg_guidance_scale * shift
elif not self._is_seg_enabled():
shift = pred_cond - pred_uncond
pred = pred_cond if self.use_original_formulation else pred_uncond
pred = pred + self.guidance_scale * shift
else:
shift = pred_cond - pred_uncond
shift_seg = pred_cond - pred_cond_seg
pred = pred_cond if self.use_original_formulation else pred_uncond
pred = pred + self.guidance_scale * shift + self.seg_guidance_scale * shift_seg
if self.guidance_rescale > 0.0:
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
return pred, {}
@property
def is_conditional(self) -> bool:
return self._count_prepared == 1 or self._count_prepared == 3
@property
def num_conditions(self) -> int:
num_conditions = 1
if self._is_cfg_enabled():
num_conditions += 1
if self._is_seg_enabled():
num_conditions += 1
return num_conditions
def _is_cfg_enabled(self) -> bool:
if not self._enabled:
return False
is_within_range = True
if self._num_inference_steps is not None:
skip_start_step = int(self._start * self._num_inference_steps)
skip_stop_step = int(self._stop * self._num_inference_steps)
is_within_range = skip_start_step <= self._step < skip_stop_step
is_close = False
if self.use_original_formulation:
is_close = math.isclose(self.guidance_scale, 0.0)
else:
is_close = math.isclose(self.guidance_scale, 1.0)
return is_within_range and not is_close
def _is_seg_enabled(self) -> bool:
if not self._enabled:
return False
is_within_range = True
if self._num_inference_steps is not None:
skip_start_step = int(self.seg_guidance_start * self._num_inference_steps)
skip_stop_step = int(self.seg_guidance_stop * self._num_inference_steps)
is_within_range = skip_start_step < self._step < skip_stop_step
is_zero = math.isclose(self.seg_guidance_scale, 0.0)
return is_within_range and not is_zero

View File

@@ -0,0 +1,133 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional, List, TYPE_CHECKING
import torch
from .guider_utils import BaseGuidance, rescale_noise_cfg
if TYPE_CHECKING:
from ..pipelines.modular_pipeline import BlockState
class TangentialClassifierFreeGuidance(BaseGuidance):
"""
Tangential Classifier Free Guidance (TCFG): https://huggingface.co/papers/2503.18137
Args:
guidance_scale (`float`, defaults to `7.5`):
The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
deterioration of image quality.
guidance_rescale (`float`, defaults to `0.0`):
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://huggingface.co/papers/2305.08891).
use_original_formulation (`bool`, defaults to `False`):
Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
we use the diffusers-native implementation that has been in the codebase for a long time. See
[~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details.
start (`float`, defaults to `0.0`):
The fraction of the total number of denoising steps after which guidance starts.
stop (`float`, defaults to `1.0`):
The fraction of the total number of denoising steps after which guidance stops.
"""
_input_predictions = ["pred_cond", "pred_uncond"]
def __init__(
self,
guidance_scale: float = 7.5,
guidance_rescale: float = 0.0,
use_original_formulation: bool = False,
start: float = 0.0,
stop: float = 1.0,
):
super().__init__(start, stop)
self.guidance_scale = guidance_scale
self.guidance_rescale = guidance_rescale
self.use_original_formulation = use_original_formulation
def prepare_inputs(self, data: "BlockState") -> List["BlockState"]:
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
data_batches = []
for i in range(self.num_conditions):
data_batch = self._prepare_batch(self._input_fields, data, tuple_indices[i], self._input_predictions[i])
data_batches.append(data_batch)
return data_batches
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> torch.Tensor:
pred = None
if not self._is_tcfg_enabled():
pred = pred_cond
else:
pred = normalized_guidance(pred_cond, pred_uncond, self.guidance_scale, self.use_original_formulation)
if self.guidance_rescale > 0.0:
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
return pred, {}
@property
def is_conditional(self) -> bool:
return self._num_outputs_prepared == 1
@property
def num_conditions(self) -> int:
num_conditions = 1
if self._is_tcfg_enabled():
num_conditions += 1
return num_conditions
def _is_tcfg_enabled(self) -> bool:
if not self._enabled:
return False
is_within_range = True
if self._num_inference_steps is not None:
skip_start_step = int(self._start * self._num_inference_steps)
skip_stop_step = int(self._stop * self._num_inference_steps)
is_within_range = skip_start_step <= self._step < skip_stop_step
is_close = False
if self.use_original_formulation:
is_close = math.isclose(self.guidance_scale, 0.0)
else:
is_close = math.isclose(self.guidance_scale, 1.0)
return is_within_range and not is_close
def normalized_guidance(pred_cond: torch.Tensor, pred_uncond: torch.Tensor, guidance_scale: float, use_original_formulation: bool = False) -> torch.Tensor:
cond_dtype = pred_cond.dtype
preds = torch.stack([pred_cond, pred_uncond], dim=1).float()
preds = preds.flatten(2)
U, S, Vh = torch.linalg.svd(preds, full_matrices=False)
Vh_modified = Vh.clone()
Vh_modified[:, 1] = 0
uncond_flat = pred_uncond.reshape(pred_uncond.size(0), 1, -1).float()
x_Vh = torch.matmul(uncond_flat, Vh.transpose(-2, -1))
x_Vh_V = torch.matmul(x_Vh, Vh_modified)
pred_uncond = x_Vh_V.reshape(pred_uncond.shape).to(cond_dtype)
pred = pred_cond if use_original_formulation else pred_uncond
shift = pred_cond - pred_uncond
pred = pred + guidance_scale * shift
return pred

View File

@@ -5,5 +5,7 @@ if is_torch_available():
from .faster_cache import FasterCacheConfig, apply_faster_cache
from .group_offloading import apply_group_offloading
from .hooks import HookRegistry, ModelHook
from .layer_skip import LayerSkipConfig, apply_layer_skip
from .layerwise_casting import apply_layerwise_casting, apply_layerwise_casting_hook
from .pyramid_attention_broadcast import PyramidAttentionBroadcastConfig, apply_pyramid_attention_broadcast
from .smoothed_energy_guidance_utils import SmoothedEnergyGuidanceConfig

View File

@@ -0,0 +1,43 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import torch
from ..models.attention import FeedForward, LuminaFeedForward
from ..models.attention_processor import Attention, MochiAttention
_ATTENTION_CLASSES = (Attention, MochiAttention)
_FEEDFORWARD_CLASSES = (FeedForward, LuminaFeedForward)
_SPATIAL_TRANSFORMER_BLOCK_IDENTIFIERS = ("blocks", "transformer_blocks", "single_transformer_blocks", "layers")
_TEMPORAL_TRANSFORMER_BLOCK_IDENTIFIERS = ("temporal_transformer_blocks",)
_CROSS_TRANSFORMER_BLOCK_IDENTIFIERS = ("blocks", "transformer_blocks", "layers")
_ALL_TRANSFORMER_BLOCK_IDENTIFIERS = tuple(
{
*_SPATIAL_TRANSFORMER_BLOCK_IDENTIFIERS,
*_TEMPORAL_TRANSFORMER_BLOCK_IDENTIFIERS,
*_CROSS_TRANSFORMER_BLOCK_IDENTIFIERS,
}
)
def _get_submodule_from_fqn(module: torch.nn.Module, fqn: str) -> Optional[torch.nn.Module]:
for submodule_name, submodule in module.named_modules():
if submodule_name == fqn:
return submodule
return None

View File

@@ -0,0 +1,271 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Callable, Type
from ..models.attention import BasicTransformerBlock
from ..models.attention_processor import AttnProcessor2_0
from ..models.transformers.cogvideox_transformer_3d import CogVideoXBlock
from ..models.transformers.transformer_cogview4 import CogView4AttnProcessor, CogView4TransformerBlock
from ..models.transformers.transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock
from ..models.transformers.transformer_hunyuan_video import (
HunyuanVideoSingleTransformerBlock,
HunyuanVideoTokenReplaceSingleTransformerBlock,
HunyuanVideoTokenReplaceTransformerBlock,
HunyuanVideoTransformerBlock,
)
from ..models.transformers.transformer_ltx import LTXVideoTransformerBlock
from ..models.transformers.transformer_mochi import MochiTransformerBlock
from ..models.transformers.transformer_wan import WanTransformerBlock
@dataclass
class AttentionProcessorMetadata:
skip_processor_output_fn: Callable[[Any], Any]
@dataclass
class TransformerBlockMetadata:
skip_block_output_fn: Callable[[Any], Any]
return_hidden_states_index: int = None
return_encoder_hidden_states_index: int = None
class AttentionProcessorRegistry:
_registry = {}
@classmethod
def register(cls, model_class: Type, metadata: AttentionProcessorMetadata):
cls._registry[model_class] = metadata
@classmethod
def get(cls, model_class: Type) -> AttentionProcessorMetadata:
if model_class not in cls._registry:
raise ValueError(f"Model class {model_class} not registered.")
return cls._registry[model_class]
class TransformerBlockRegistry:
_registry = {}
@classmethod
def register(cls, model_class: Type, metadata: TransformerBlockMetadata):
cls._registry[model_class] = metadata
@classmethod
def get(cls, model_class: Type) -> TransformerBlockMetadata:
if model_class not in cls._registry:
raise ValueError(f"Model class {model_class} not registered.")
return cls._registry[model_class]
def _register_attention_processors_metadata():
# AttnProcessor2_0
AttentionProcessorRegistry.register(
model_class=AttnProcessor2_0,
metadata=AttentionProcessorMetadata(
skip_processor_output_fn=_skip_proc_output_fn_Attention_AttnProcessor2_0,
),
)
# CogView4AttnProcessor
AttentionProcessorRegistry.register(
model_class=CogView4AttnProcessor,
metadata=AttentionProcessorMetadata(
skip_processor_output_fn=_skip_proc_output_fn_Attention_CogView4AttnProcessor,
),
)
def _register_transformer_blocks_metadata():
# BasicTransformerBlock
TransformerBlockRegistry.register(
model_class=BasicTransformerBlock,
metadata=TransformerBlockMetadata(
skip_block_output_fn=_skip_block_output_fn_BasicTransformerBlock,
return_hidden_states_index=0,
return_encoder_hidden_states_index=None,
),
)
# CogVideoX
TransformerBlockRegistry.register(
model_class=CogVideoXBlock,
metadata=TransformerBlockMetadata(
skip_block_output_fn=_skip_block_output_fn_CogVideoXBlock,
return_hidden_states_index=0,
return_encoder_hidden_states_index=1,
),
)
# CogView4
TransformerBlockRegistry.register(
model_class=CogView4TransformerBlock,
metadata=TransformerBlockMetadata(
skip_block_output_fn=_skip_block_output_fn_CogView4TransformerBlock,
return_hidden_states_index=0,
return_encoder_hidden_states_index=1,
),
)
# Flux
TransformerBlockRegistry.register(
model_class=FluxTransformerBlock,
metadata=TransformerBlockMetadata(
skip_block_output_fn=_skip_block_output_fn_FluxTransformerBlock,
return_hidden_states_index=1,
return_encoder_hidden_states_index=0,
),
)
TransformerBlockRegistry.register(
model_class=FluxSingleTransformerBlock,
metadata=TransformerBlockMetadata(
skip_block_output_fn=_skip_block_output_fn_FluxSingleTransformerBlock,
return_hidden_states_index=1,
return_encoder_hidden_states_index=0,
),
)
# HunyuanVideo
TransformerBlockRegistry.register(
model_class=HunyuanVideoTransformerBlock,
metadata=TransformerBlockMetadata(
skip_block_output_fn=_skip_block_output_fn_HunyuanVideoTransformerBlock,
return_hidden_states_index=0,
return_encoder_hidden_states_index=1,
),
)
TransformerBlockRegistry.register(
model_class=HunyuanVideoSingleTransformerBlock,
metadata=TransformerBlockMetadata(
skip_block_output_fn=_skip_block_output_fn_HunyuanVideoSingleTransformerBlock,
return_hidden_states_index=0,
return_encoder_hidden_states_index=1,
),
)
TransformerBlockRegistry.register(
model_class=HunyuanVideoTokenReplaceTransformerBlock,
metadata=TransformerBlockMetadata(
skip_block_output_fn=_skip_block_output_fn_HunyuanVideoTokenReplaceTransformerBlock,
return_hidden_states_index=0,
return_encoder_hidden_states_index=1,
),
)
TransformerBlockRegistry.register(
model_class=HunyuanVideoTokenReplaceSingleTransformerBlock,
metadata=TransformerBlockMetadata(
skip_block_output_fn=_skip_block_output_fn_HunyuanVideoTokenReplaceSingleTransformerBlock,
return_hidden_states_index=0,
return_encoder_hidden_states_index=1,
),
)
# LTXVideo
TransformerBlockRegistry.register(
model_class=LTXVideoTransformerBlock,
metadata=TransformerBlockMetadata(
skip_block_output_fn=_skip_block_output_fn_LTXVideoTransformerBlock,
return_hidden_states_index=0,
return_encoder_hidden_states_index=None,
),
)
# Mochi
TransformerBlockRegistry.register(
model_class=MochiTransformerBlock,
metadata=TransformerBlockMetadata(
skip_block_output_fn=_skip_block_output_fn_MochiTransformerBlock,
return_hidden_states_index=0,
return_encoder_hidden_states_index=1,
),
)
# Wan
TransformerBlockRegistry.register(
model_class=WanTransformerBlock,
metadata=TransformerBlockMetadata(
skip_block_output_fn=_skip_block_output_fn_WanTransformerBlock,
return_hidden_states_index=0,
return_encoder_hidden_states_index=None,
),
)
# fmt: off
def _skip_attention___ret___hidden_states(self, *args, **kwargs):
hidden_states = kwargs.get("hidden_states", None)
if hidden_states is None and len(args) > 0:
hidden_states = args[0]
return hidden_states
def _skip_attention___ret___hidden_states___encoder_hidden_states(self, *args, **kwargs):
hidden_states = kwargs.get("hidden_states", None)
encoder_hidden_states = kwargs.get("encoder_hidden_states", None)
if hidden_states is None and len(args) > 0:
hidden_states = args[0]
if encoder_hidden_states is None and len(args) > 1:
encoder_hidden_states = args[1]
return hidden_states, encoder_hidden_states
_skip_proc_output_fn_Attention_AttnProcessor2_0 = _skip_attention___ret___hidden_states
_skip_proc_output_fn_Attention_CogView4AttnProcessor = _skip_attention___ret___hidden_states___encoder_hidden_states
def _skip_block_output_fn___hidden_states_0___ret___hidden_states(self, *args, **kwargs):
hidden_states = kwargs.get("hidden_states", None)
if hidden_states is None and len(args) > 0:
hidden_states = args[0]
return hidden_states
def _skip_block_output_fn___hidden_states_0___encoder_hidden_states_1___ret___hidden_states___encoder_hidden_states(self, *args, **kwargs):
hidden_states = kwargs.get("hidden_states", None)
encoder_hidden_states = kwargs.get("encoder_hidden_states", None)
if hidden_states is None and len(args) > 0:
hidden_states = args[0]
if encoder_hidden_states is None and len(args) > 1:
encoder_hidden_states = args[1]
return hidden_states, encoder_hidden_states
def _skip_block_output_fn___hidden_states_0___encoder_hidden_states_1___ret___encoder_hidden_states___hidden_states(self, *args, **kwargs):
hidden_states = kwargs.get("hidden_states", None)
encoder_hidden_states = kwargs.get("encoder_hidden_states", None)
if hidden_states is None and len(args) > 0:
hidden_states = args[0]
if encoder_hidden_states is None and len(args) > 1:
encoder_hidden_states = args[1]
return encoder_hidden_states, hidden_states
_skip_block_output_fn_BasicTransformerBlock = _skip_block_output_fn___hidden_states_0___ret___hidden_states
_skip_block_output_fn_CogVideoXBlock = _skip_block_output_fn___hidden_states_0___encoder_hidden_states_1___ret___hidden_states___encoder_hidden_states
_skip_block_output_fn_CogView4TransformerBlock = _skip_block_output_fn___hidden_states_0___encoder_hidden_states_1___ret___hidden_states___encoder_hidden_states
_skip_block_output_fn_FluxTransformerBlock = _skip_block_output_fn___hidden_states_0___encoder_hidden_states_1___ret___encoder_hidden_states___hidden_states
_skip_block_output_fn_FluxSingleTransformerBlock = _skip_block_output_fn___hidden_states_0___encoder_hidden_states_1___ret___encoder_hidden_states___hidden_states
_skip_block_output_fn_HunyuanVideoTransformerBlock = _skip_block_output_fn___hidden_states_0___encoder_hidden_states_1___ret___hidden_states___encoder_hidden_states
_skip_block_output_fn_HunyuanVideoSingleTransformerBlock = _skip_block_output_fn___hidden_states_0___encoder_hidden_states_1___ret___hidden_states___encoder_hidden_states
_skip_block_output_fn_HunyuanVideoTokenReplaceTransformerBlock = _skip_block_output_fn___hidden_states_0___encoder_hidden_states_1___ret___hidden_states___encoder_hidden_states
_skip_block_output_fn_HunyuanVideoTokenReplaceSingleTransformerBlock = _skip_block_output_fn___hidden_states_0___encoder_hidden_states_1___ret___hidden_states___encoder_hidden_states
_skip_block_output_fn_LTXVideoTransformerBlock = _skip_block_output_fn___hidden_states_0___ret___hidden_states
_skip_block_output_fn_MochiTransformerBlock = _skip_block_output_fn___hidden_states_0___encoder_hidden_states_1___ret___hidden_states___encoder_hidden_states
_skip_block_output_fn_WanTransformerBlock = _skip_block_output_fn___hidden_states_0___ret___hidden_states
# fmt: on
_register_attention_processors_metadata()
_register_transformer_blocks_metadata()

View File

@@ -0,0 +1,229 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Callable, List, Optional
import torch
from ..utils import get_logger
from ..utils.torch_utils import unwrap_module
from ._common import _ALL_TRANSFORMER_BLOCK_IDENTIFIERS, _ATTENTION_CLASSES, _FEEDFORWARD_CLASSES, _get_submodule_from_fqn
from ._helpers import AttentionProcessorRegistry, TransformerBlockRegistry
from .hooks import HookRegistry, ModelHook
logger = get_logger(__name__) # pylint: disable=invalid-name
_LAYER_SKIP_HOOK = "layer_skip_hook"
@dataclass
class LayerSkipConfig:
r"""
Configuration for skipping internal transformer blocks when executing a transformer model.
Args:
indices (`List[int]`):
The indices of the layer to skip. This is typically the first layer in the transformer block.
fqn (`str`, defaults to `"auto"`):
The fully qualified name identifying the stack of transformer blocks. Typically, this is
`transformer_blocks`, `single_transformer_blocks`, `blocks`, `layers`, or `temporal_transformer_blocks`.
For automatic detection, set this to `"auto"`.
"auto" only works on DiT models. For UNet models, you must provide the correct fqn.
skip_attention (`bool`, defaults to `True`):
Whether to skip attention blocks.
skip_ff (`bool`, defaults to `True`):
Whether to skip feed-forward blocks.
skip_attention_scores (`bool`, defaults to `False`):
Whether to skip attention score computation in the attention blocks. This is equivalent to using `value`
projections as the output of scaled dot product attention.
dropout (`float`, defaults to `1.0`):
The dropout probability for dropping the outputs of the skipped layers. By default, this is set to `1.0`,
meaning that the outputs of the skipped layers are completely ignored. If set to `0.0`, the outputs of the
skipped layers are fully retained, which is equivalent to not skipping any layers.
"""
indices: List[int]
fqn: str = "auto"
skip_attention: bool = True
skip_attention_scores: bool = False
skip_ff: bool = True
dropout: float = 1.0
def __post_init__(self):
if not (0 <= self.dropout <= 1):
raise ValueError(f"Expected `dropout` to be between 0.0 and 1.0, but got {self.dropout}.")
if not math.isclose(self.dropout, 1.0) and self.skip_attention_scores:
raise ValueError(
"Cannot set `skip_attention_scores` to True when `dropout` is not 1.0. Please set `dropout` to 1.0."
)
class AttentionScoreSkipFunctionMode(torch.overrides.TorchFunctionMode):
def __torch_function__(self, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if func is torch.nn.functional.scaled_dot_product_attention:
value = kwargs.get("value", None)
if value is None:
value = args[2]
return value
return func(*args, **kwargs)
class AttentionProcessorSkipHook(ModelHook):
def __init__(self, skip_processor_output_fn: Callable, skip_attention_scores: bool = False, dropout: float = 1.0):
self.skip_processor_output_fn = skip_processor_output_fn
self.skip_attention_scores = skip_attention_scores
self.dropout = dropout
def new_forward(self, module: torch.nn.Module, *args, **kwargs):
if self.skip_attention_scores:
if not math.isclose(self.dropout, 1.0):
raise ValueError(
"Cannot set `skip_attention_scores` to True when `dropout` is not 1.0. Please set `dropout` to 1.0."
)
with AttentionScoreSkipFunctionMode():
output = self.fn_ref.original_forward(*args, **kwargs)
else:
if math.isclose(self.dropout, 1.0):
output = self.skip_processor_output_fn(module, *args, **kwargs)
else:
output = self.fn_ref.original_forward(*args, **kwargs)
output = torch.nn.functional.dropout(output, p=self.dropout)
return output
class FeedForwardSkipHook(ModelHook):
def __init__(self, dropout: float):
super().__init__()
self.dropout = dropout
def new_forward(self, module: torch.nn.Module, *args, **kwargs):
if math.isclose(self.dropout, 1.0):
output = kwargs.get("hidden_states", None)
if output is None:
output = kwargs.get("x", None)
if output is None and len(args) > 0:
output = args[0]
else:
output = self.fn_ref.original_forward(*args, **kwargs)
output = torch.nn.functional.dropout(output, p=self.dropout)
return output
class TransformerBlockSkipHook(ModelHook):
def __init__(self, dropout: float):
super().__init__()
self.dropout = dropout
def initialize_hook(self, module):
self._metadata = TransformerBlockRegistry.get(unwrap_module(module).__class__)
return module
def new_forward(self, module: torch.nn.Module, *args, **kwargs):
if math.isclose(self.dropout, 1.0):
output = self._metadata.skip_block_output_fn(module, *args, **kwargs)
else:
output = self.fn_ref.original_forward(*args, **kwargs)
output = torch.nn.functional.dropout(output, p=self.dropout)
return output
def apply_layer_skip(module: torch.nn.Module, config: LayerSkipConfig) -> None:
r"""
Apply layer skipping to internal layers of a transformer.
Args:
module (`torch.nn.Module`):
The transformer model to which the layer skip hook should be applied.
config (`LayerSkipConfig`):
The configuration for the layer skip hook.
Example:
```python
>>> from diffusers import apply_layer_skip_hook, CogVideoXTransformer3DModel, LayerSkipConfig
>>> transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16)
>>> config = LayerSkipConfig(layer_index=[10, 20], fqn="transformer_blocks")
>>> apply_layer_skip_hook(transformer, config)
```
"""
_apply_layer_skip_hook(module, config)
def _apply_layer_skip_hook(module: torch.nn.Module, config: LayerSkipConfig, name: Optional[str] = None) -> None:
name = name or _LAYER_SKIP_HOOK
if config.skip_attention and config.skip_attention_scores:
raise ValueError("Cannot set both `skip_attention` and `skip_attention_scores` to True. Please choose one.")
if not math.isclose(config.dropout, 1.0) and config.skip_attention_scores:
raise ValueError("Cannot set `skip_attention_scores` to True when `dropout` is not 1.0. Please set `dropout` to 1.0.")
if config.fqn == "auto":
for identifier in _ALL_TRANSFORMER_BLOCK_IDENTIFIERS:
if hasattr(module, identifier):
config.fqn = identifier
break
else:
raise ValueError(
"Could not find a suitable identifier for the transformer blocks automatically. Please provide a valid "
"`fqn` (fully qualified name) that identifies a stack of transformer blocks."
)
transformer_blocks = _get_submodule_from_fqn(module, config.fqn)
if transformer_blocks is None or not isinstance(transformer_blocks, torch.nn.ModuleList):
raise ValueError(
f"Could not find {config.fqn} in the provided module, or configured `fqn` (fully qualified name) does not identify "
f"a `torch.nn.ModuleList`. Please provide a valid `fqn` that identifies a stack of transformer blocks."
)
if len(config.indices) == 0:
raise ValueError("Layer index list is empty. Please provide a non-empty list of layer indices to skip.")
blocks_found = False
for i, block in enumerate(transformer_blocks):
if i not in config.indices:
continue
blocks_found = True
if config.skip_attention and config.skip_ff:
logger.debug(f"Applying TransformerBlockSkipHook to '{config.fqn}.{i}'")
registry = HookRegistry.check_if_exists_or_initialize(block)
hook = TransformerBlockSkipHook(config.dropout)
registry.register_hook(hook, name)
elif config.skip_attention or config.skip_attention_scores:
for submodule_name, submodule in block.named_modules():
if isinstance(submodule, _ATTENTION_CLASSES) and not submodule.is_cross_attention:
logger.debug(f"Applying AttentionProcessorSkipHook to '{config.fqn}.{i}.{submodule_name}'")
output_fn = AttentionProcessorRegistry.get(submodule.processor.__class__).skip_processor_output_fn
registry = HookRegistry.check_if_exists_or_initialize(submodule)
hook = AttentionProcessorSkipHook(output_fn, config.skip_attention_scores, config.dropout)
registry.register_hook(hook, name)
if config.skip_ff:
for submodule_name, submodule in block.named_modules():
if isinstance(submodule, _FEEDFORWARD_CLASSES):
logger.debug(f"Applying FeedForwardSkipHook to '{config.fqn}.{i}.{submodule_name}'")
registry = HookRegistry.check_if_exists_or_initialize(submodule)
hook = FeedForwardSkipHook(config.dropout)
registry.register_hook(hook, name)
if not blocks_found:
raise ValueError(
f"Could not find any transformer blocks matching the provided indices {config.indices} and "
f"fully qualified name '{config.fqn}'. Please check the indices and fqn for correctness."
)

View File

@@ -0,0 +1,158 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from ..utils import get_logger
from ._common import _ATTENTION_CLASSES, _get_submodule_from_fqn
from .hooks import HookRegistry, ModelHook
logger = get_logger(__name__) # pylint: disable=invalid-name
_SMOOTHED_ENERGY_GUIDANCE_HOOK = "smoothed_energy_guidance_hook"
@dataclass
class SmoothedEnergyGuidanceConfig:
r"""
Configuration for skipping internal transformer blocks when executing a transformer model.
Args:
indices (`List[int]`):
The indices of the layer to skip. This is typically the first layer in the transformer block.
fqn (`str`, defaults to `"auto"`):
The fully qualified name identifying the stack of transformer blocks. Typically, this is
`transformer_blocks`, `single_transformer_blocks`, `blocks`, `layers`, or `temporal_transformer_blocks`.
For automatic detection, set this to `"auto"`.
"auto" only works on DiT models. For UNet models, you must provide the correct fqn.
_query_proj_identifiers (`List[str]`, defaults to `None`):
The identifiers for the query projection layers. Typically, these are `to_q`, `query`, or `q_proj`.
If `None`, `to_q` is used by default.
"""
indices: List[int]
fqn: str = "auto"
_query_proj_identifiers: List[str] = None
class SmoothedEnergyGuidanceHook(ModelHook):
def __init__(self, blur_sigma: float = 1.0, blur_threshold_inf: float = 9999.9) -> None:
super().__init__()
self.blur_sigma = blur_sigma
self.blur_threshold_inf = blur_threshold_inf
def post_forward(self, module: torch.nn.Module, output: torch.Tensor) -> torch.Tensor:
# Copied from https://github.com/SusungHong/SEG-SDXL/blob/cf8256d640d5373541cfea3b3b6caf93272cf986/pipeline_seg.py#L172C31-L172C102
kernel_size = math.ceil(6 * self.blur_sigma) + 1 - math.ceil(6 * self.blur_sigma) % 2
smoothed_output = _gaussian_blur_2d(output, kernel_size, self.blur_sigma, self.blur_threshold_inf)
return smoothed_output
def _apply_smoothed_energy_guidance_hook(module: torch.nn.Module, config: SmoothedEnergyGuidanceConfig, blur_sigma: float, name: Optional[str] = None) -> None:
name = name or _SMOOTHED_ENERGY_GUIDANCE_HOOK
if config.fqn == "auto":
for identifier in _ALL_TRANSFORMER_BLOCK_IDENTIFIERS:
if hasattr(module, identifier):
config.fqn = identifier
break
else:
raise ValueError(
"Could not find a suitable identifier for the transformer blocks automatically. Please provide a valid "
"`fqn` (fully qualified name) that identifies a stack of transformer blocks."
)
if config._query_proj_identifiers is None:
config._query_proj_identifiers = ["to_q"]
transformer_blocks = _get_submodule_from_fqn(module, config.fqn)
blocks_found = False
for i, block in enumerate(transformer_blocks):
if i not in config.indices:
continue
blocks_found = True
for submodule_name, submodule in block.named_modules():
if not isinstance(submodule, _ATTENTION_CLASSES) or submodule.is_cross_attention:
continue
for identifier in config._query_proj_identifiers:
query_proj = getattr(submodule, identifier, None)
if query_proj is None or not isinstance(query_proj, torch.nn.Linear):
continue
logger.debug(
f"Registering smoothed energy guidance hook on {config.fqn}.{i}.{submodule_name}.{identifier}"
)
registry = HookRegistry.check_if_exists_or_initialize(query_proj)
hook = SmoothedEnergyGuidanceHook(blur_sigma)
registry.register_hook(hook, name)
if not blocks_found:
raise ValueError(
f"Could not find any transformer blocks matching the provided indices {config.indices} and "
f"fully qualified name '{config.fqn}'. Please check the indices and fqn for correctness."
)
# Modified from https://github.com/SusungHong/SEG-SDXL/blob/cf8256d640d5373541cfea3b3b6caf93272cf986/pipeline_seg.py#L71
def _gaussian_blur_2d(query: torch.Tensor, kernel_size: int, sigma: float, sigma_threshold_inf: float) -> torch.Tensor:
"""
This implementation assumes that the input query is for visual (image/videos) tokens to apply the 2D gaussian
blur. However, some models use joint text-visual token attention for which this may not be suitable. Additionally,
this implementation also assumes that the visual tokens come from a square image/video. In practice, despite
these assumptions, applying the 2D square gaussian blur on the query projections generates reasonable results
for Smoothed Energy Guidance.
SEG is only supported as an experimental prototype feature for now, so the implementation may be modified
in the future without warning or guarantee of reproducibility.
"""
assert query.ndim == 3
is_inf = sigma > sigma_threshold_inf
batch_size, seq_len, embed_dim = query.shape
seq_len_sqrt = int(math.sqrt(seq_len))
num_square_tokens = seq_len_sqrt * seq_len_sqrt
query_slice = query[:, :num_square_tokens, :]
query_slice = query_slice.permute(0, 2, 1)
query_slice = query_slice.reshape(batch_size, embed_dim, seq_len_sqrt, seq_len_sqrt)
if is_inf:
kernel_size = min(kernel_size, seq_len_sqrt - (seq_len_sqrt % 2 - 1))
kernel_size_half = (kernel_size - 1) / 2
x = torch.linspace(-kernel_size_half, kernel_size_half, steps=kernel_size)
pdf = torch.exp(-0.5 * (x / sigma).pow(2))
kernel1d = pdf / pdf.sum()
kernel1d = kernel1d.to(query)
kernel2d = torch.matmul(kernel1d[:, None], kernel1d[None, :])
kernel2d = kernel2d.expand(embed_dim, 1, kernel2d.shape[0], kernel2d.shape[1])
padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2]
query_slice = F.pad(query_slice, padding, mode="reflect")
query_slice = F.conv2d(query_slice, kernel2d, groups=embed_dim)
else:
query_slice[:] = query_slice.mean(dim=(-2, -1), keepdim=True)
query_slice = query_slice.reshape(batch_size, embed_dim, num_square_tokens)
query_slice = query_slice.permute(0, 2, 1)
query[:, :num_square_tokens, :] = query_slice.clone()
return query

View File

@@ -19,7 +19,6 @@ import PIL
import torch
from collections import OrderedDict
from ...guider import CFGGuider
from ...image_processor import VaeImageProcessor, PipelineImageInput
from ...loaders import StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin, ModularIPAdapterMixin
from ...models import ControlNetModel, ImageProjection, UNet2DConditionModel, AutoencoderKL, ControlNetUnionModel
@@ -31,7 +30,7 @@ from ...utils import (
scale_lora_layers,
unscale_lora_layers,
)
from ...utils.torch_utils import is_compiled_module, randn_tensor
from ...utils.torch_utils import randn_tensor, unwrap_module
from ..controlnet.multicontrolnet import MultiControlNetModel
from ..modular_pipeline import (
AutoPipelineBlocks,
@@ -58,7 +57,7 @@ from transformers import (
)
from ...schedulers import KarrasDiffusionSchedulers
from ...guider import Guiders, CFGGuider
from ...guiders import GuiderType, ClassifierFreeGuidance
import numpy as np
@@ -185,6 +184,7 @@ class StableDiffusionXLIPAdapterStep(PipelineBlock, ModularIPAdapterMixin):
ComponentSpec("image_encoder", CLIPVisionModelWithProjection),
ComponentSpec("feature_extractor", CLIPImageProcessor),
ComponentSpec("unet", UNet2DConditionModel),
ComponentSpec("guider", GuiderType),
]
@property
@@ -195,11 +195,7 @@ class StableDiffusionXLIPAdapterStep(PipelineBlock, ModularIPAdapterMixin):
PipelineImageInput,
required=True,
description="The image(s) to be used as ip adapter"
),
InputParam(
"guidance_scale",
default=5.0,
),
)
]
@@ -237,10 +233,10 @@ class StableDiffusionXLIPAdapterStep(PipelineBlock, ModularIPAdapterMixin):
# modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
def prepare_ip_adapter_image_embeds(
self, components, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
self, components, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, prepare_unconditional_embeds
):
image_embeds = []
if do_classifier_free_guidance:
if prepare_unconditional_embeds:
negative_image_embeds = []
if ip_adapter_image_embeds is None:
if not isinstance(ip_adapter_image, list):
@@ -260,11 +256,11 @@ class StableDiffusionXLIPAdapterStep(PipelineBlock, ModularIPAdapterMixin):
)
image_embeds.append(single_image_embeds[None, :])
if do_classifier_free_guidance:
if prepare_unconditional_embeds:
negative_image_embeds.append(single_negative_image_embeds[None, :])
else:
for single_image_embeds in ip_adapter_image_embeds:
if do_classifier_free_guidance:
if prepare_unconditional_embeds:
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
negative_image_embeds.append(single_negative_image_embeds)
image_embeds.append(single_image_embeds)
@@ -272,7 +268,7 @@ class StableDiffusionXLIPAdapterStep(PipelineBlock, ModularIPAdapterMixin):
ip_adapter_image_embeds = []
for i, single_image_embeds in enumerate(image_embeds):
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
if prepare_unconditional_embeds:
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
@@ -285,7 +281,7 @@ class StableDiffusionXLIPAdapterStep(PipelineBlock, ModularIPAdapterMixin):
def __call__(self, pipeline, state: PipelineState) -> PipelineState:
data = self.get_block_state(state)
data.do_classifier_free_guidance = data.guidance_scale > 1.0
data.prepare_unconditional_embeds = pipeline.guider.num_conditions > 1
data.device = pipeline._execution_device
data.ip_adapter_embeds = self.prepare_ip_adapter_image_embeds(
@@ -294,9 +290,9 @@ class StableDiffusionXLIPAdapterStep(PipelineBlock, ModularIPAdapterMixin):
ip_adapter_image_embeds=None,
device=data.device,
num_images_per_prompt=1,
do_classifier_free_guidance=data.do_classifier_free_guidance,
prepare_unconditional_embeds=data.prepare_unconditional_embeds,
)
if data.do_classifier_free_guidance:
if data.prepare_unconditional_embeds:
data.negative_ip_adapter_embeds = []
for i, image_embeds in enumerate(data.ip_adapter_embeds):
negative_image_embeds, image_embeds = image_embeds.chunk(2)
@@ -324,6 +320,7 @@ class StableDiffusionXLTextEncoderStep(PipelineBlock):
ComponentSpec("text_encoder_2", CLIPTextModelWithProjection),
ComponentSpec("tokenizer", CLIPTokenizer),
ComponentSpec("tokenizer_2", CLIPTokenizer),
ComponentSpec("guider", GuiderType),
]
@property
@@ -338,7 +335,6 @@ class StableDiffusionXLTextEncoderStep(PipelineBlock):
InputParam("negative_prompt"),
InputParam("negative_prompt_2"),
InputParam("cross_attention_kwargs"),
InputParam("guidance_scale",default=5.0),
InputParam("clip_skip"),
]
@@ -359,7 +355,6 @@ class StableDiffusionXLTextEncoderStep(PipelineBlock):
elif data.prompt_2 is not None and (not isinstance(data.prompt_2, str) and not isinstance(data.prompt_2, list)):
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(data.prompt_2)}")
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt with self -> components
def encode_prompt(
self,
components,
@@ -367,7 +362,7 @@ class StableDiffusionXLTextEncoderStep(PipelineBlock):
prompt_2: Optional[str] = None,
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
prepare_unconditional_embeds: bool = True,
negative_prompt: Optional[str] = None,
negative_prompt_2: Optional[str] = None,
prompt_embeds: Optional[torch.Tensor] = None,
@@ -390,8 +385,8 @@ class StableDiffusionXLTextEncoderStep(PipelineBlock):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
prepare_unconditional_embeds (`bool`):
whether to use prepare unconditional embeddings or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
@@ -499,10 +494,10 @@ class StableDiffusionXLTextEncoderStep(PipelineBlock):
# get unconditional embeddings for classifier free guidance
zero_out_negative_prompt = negative_prompt is None and components.config.force_zeros_for_empty_prompt
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
if prepare_unconditional_embeds and negative_prompt_embeds is None and zero_out_negative_prompt:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
elif do_classifier_free_guidance and negative_prompt_embeds is None:
elif prepare_unconditional_embeds and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt_2 = negative_prompt_2 or negative_prompt
@@ -563,7 +558,7 @@ class StableDiffusionXLTextEncoderStep(PipelineBlock):
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
if prepare_unconditional_embeds:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
@@ -578,7 +573,7 @@ class StableDiffusionXLTextEncoderStep(PipelineBlock):
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
if do_classifier_free_guidance:
if prepare_unconditional_embeds:
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
@@ -602,10 +597,9 @@ class StableDiffusionXLTextEncoderStep(PipelineBlock):
data = self.get_block_state(state)
self.check_inputs(pipeline, data)
data.do_classifier_free_guidance = data.guidance_scale > 1.0
data.prepare_unconditional_embeds = pipeline.guider.num_conditions > 1
data.device = pipeline._execution_device
# Encode input prompt
data.text_encoder_lora_scale = (
data.cross_attention_kwargs.get("scale", None) if data.cross_attention_kwargs is not None else None
@@ -621,7 +615,7 @@ class StableDiffusionXLTextEncoderStep(PipelineBlock):
data.prompt_2,
data.device,
1,
data.do_classifier_free_guidance,
data.prepare_unconditional_embeds,
data.negative_prompt,
data.negative_prompt_2,
prompt_embeds=None,
@@ -1751,7 +1745,6 @@ class StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep(PipelineBlock):
InputParam("crops_coords_top_left", default=(0, 0)),
InputParam("negative_crops_coords_top_left", default=(0, 0)),
InputParam("num_images_per_prompt", default=1),
InputParam("guidance_scale", required=True),
InputParam("aesthetic_score", default=6.0),
InputParam("negative_aesthetic_score", default=2.0),
]
@@ -1898,7 +1891,8 @@ class StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep(PipelineBlock):
and pipeline.unet is not None
and pipeline.unet.config.time_cond_proj_dim is not None
):
data.guidance_scale_tensor = torch.tensor(data.guidance_scale - 1).repeat(data.batch_size * data.num_images_per_prompt)
# TODO(yiyi, aryan): Ideally, this should be `embedded_guidance_scale` instead of pulling from guider. Guider scales should be different from this!
data.guidance_scale_tensor = torch.tensor(pipeline.guider.guidance_scale - 1).repeat(data.batch_size * data.num_images_per_prompt)
data.timestep_cond = self.get_guidance_scale_embedding(
data.guidance_scale_tensor, embedding_dim=pipeline.unet.config.time_cond_proj_dim
).to(device=data.device, dtype=data.latents.dtype)
@@ -1926,7 +1920,6 @@ class StableDiffusionXLPrepareAdditionalConditioningStep(PipelineBlock):
InputParam("crops_coords_top_left", default=(0, 0)),
InputParam("negative_crops_coords_top_left", default=(0, 0)),
InputParam("num_images_per_prompt", default=1),
InputParam("guidance_scale", default=5.0),
]
@property
@@ -2052,7 +2045,8 @@ class StableDiffusionXLPrepareAdditionalConditioningStep(PipelineBlock):
and pipeline.unet is not None
and pipeline.unet.config.time_cond_proj_dim is not None
):
data.guidance_scale_tensor = torch.tensor(data.guidance_scale - 1).repeat(data.batch_size * data.num_images_per_prompt)
# TODO(yiyi, aryan): Ideally, this should be `embedded_guidance_scale` instead of pulling from guider. Guider scales should be different from this!
data.guidance_scale_tensor = torch.tensor(pipeline.guider.guidance_scale - 1).repeat(data.batch_size * data.num_images_per_prompt)
data.timestep_cond = self.get_guidance_scale_embedding(
data.guidance_scale_tensor, embedding_dim=pipeline.unet.config.time_cond_proj_dim
).to(device=data.device, dtype=data.latents.dtype)
@@ -2068,7 +2062,7 @@ class StableDiffusionXLDenoiseStep(PipelineBlock):
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("guider", CFGGuider, obj=CFGGuider()),
ComponentSpec("guider", GuiderType, obj=ClassifierFreeGuidance()),
ComponentSpec("scheduler", KarrasDiffusionSchedulers),
ComponentSpec("unet", UNet2DConditionModel),
]
@@ -2082,12 +2076,9 @@ class StableDiffusionXLDenoiseStep(PipelineBlock):
@property
def inputs(self) -> List[Tuple[str, Any]]:
return [
InputParam("guidance_scale", default=5.0),
InputParam("guidance_rescale", default=0.0),
InputParam("cross_attention_kwargs"),
InputParam("generator"),
InputParam("eta", default=0.0),
InputParam("guider_kwargs"),
InputParam("num_images_per_prompt", default=1),
]
@@ -2238,78 +2229,63 @@ class StableDiffusionXLDenoiseStep(PipelineBlock):
data.num_channels_unet = pipeline.unet.config.in_channels
data.disable_guidance = True if pipeline.unet.config.time_cond_proj_dim is not None else False
# adding default guider arguments: do_classifier_free_guidance, guidance_scale, guidance_rescale
data.guider_kwargs = data.guider_kwargs or {}
data.guider_kwargs = {
**data.guider_kwargs,
"disable_guidance": data.disable_guidance,
"guidance_scale": data.guidance_scale,
"guidance_rescale": data.guidance_rescale,
"batch_size": data.batch_size * data.num_images_per_prompt,
}
pipeline.guider.set_guider(pipeline, data.guider_kwargs)
# Prepare conditional inputs using the guider
data.prompt_embeds = pipeline.guider.prepare_input(
data.prompt_embeds,
data.negative_prompt_embeds,
)
data.add_time_ids = pipeline.guider.prepare_input(
data.add_time_ids,
data.negative_add_time_ids,
)
data.pooled_prompt_embeds = pipeline.guider.prepare_input(
data.pooled_prompt_embeds,
data.negative_pooled_prompt_embeds,
)
if data.num_channels_unet == 9:
data.mask = pipeline.guider.prepare_input(data.mask, data.mask)
data.masked_image_latents = pipeline.guider.prepare_input(data.masked_image_latents, data.masked_image_latents)
data.added_cond_kwargs = {
"text_embeds": data.pooled_prompt_embeds,
"time_ids": data.add_time_ids,
}
if data.ip_adapter_embeds is not None:
data.ip_adapter_embeds = pipeline.guider.prepare_input(data.ip_adapter_embeds, data.negative_ip_adapter_embeds)
data.added_cond_kwargs["image_embeds"] = data.ip_adapter_embeds
if data.disable_guidance:
pipeline.guider.disable()
else:
pipeline.guider.enable()
# Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
data.extra_step_kwargs = self.prepare_extra_step_kwargs(pipeline, data.generator, data.eta)
data.num_warmup_steps = max(len(data.timesteps) - data.num_inference_steps * pipeline.scheduler.order, 0)
pipeline.guider.set_input_fields(
prompt_embeds=("prompt_embeds", "negative_prompt_embeds"),
add_time_ids=("add_time_ids", "negative_add_time_ids"),
pooled_prompt_embeds=("pooled_prompt_embeds", "negative_pooled_prompt_embeds"),
ip_adapter_embeds=("ip_adapter_embeds", "negative_ip_adapter_embeds"),
)
with pipeline.progress_bar(total=data.num_inference_steps) as progress_bar:
for i, t in enumerate(data.timesteps):
# expand the latents if we are doing classifier free guidance
data.latent_model_input = pipeline.guider.prepare_input(data.latents, data.latents)
data.latent_model_input = pipeline.scheduler.scale_model_input(data.latent_model_input, t)
pipeline.guider.set_state(step=i, num_inference_steps=data.num_inference_steps, timestep=t)
guider_data = pipeline.guider.prepare_inputs(data)
# inpainting
data.scaled_latents = pipeline.scheduler.scale_model_input(data.latents, t)
# Prepare for inpainting
if data.num_channels_unet == 9:
data.latent_model_input = torch.cat([data.latent_model_input, data.mask, data.masked_image_latents], dim=1)
data.scaled_latents = torch.cat([data.scaled_latents, data.mask, data.masked_image_latents], dim=1)
for batch in guider_data:
pipeline.guider.prepare_models(pipeline.unet)
# Prepare additional conditionings
batch.added_cond_kwargs = {
"text_embeds": batch.pooled_prompt_embeds,
"time_ids": batch.add_time_ids,
}
if batch.ip_adapter_embeds is not None:
batch.added_cond_kwargs["image_embeds"] = batch.ip_adapter_embeds
# Predict the noise residual
batch.noise_pred = pipeline.unet(
data.scaled_latents,
t,
encoder_hidden_states=batch.prompt_embeds,
timestep_cond=data.timestep_cond,
cross_attention_kwargs=data.cross_attention_kwargs,
added_cond_kwargs=batch.added_cond_kwargs,
return_dict=False,
)[0]
pipeline.guider.cleanup_models(pipeline.unet)
# predict the noise residual
data.noise_pred = pipeline.unet(
data.latent_model_input,
t,
encoder_hidden_states=data.prompt_embeds,
timestep_cond=data.timestep_cond,
cross_attention_kwargs=data.cross_attention_kwargs,
added_cond_kwargs=data.added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
data.noise_pred = pipeline.guider.apply_guidance(
data.noise_pred,
timestep=t,
latents=data.latents,
)
# compute the previous noisy sample x_t -> x_t-1
# Perform guidance
data.noise_pred, scheduler_step_kwargs = pipeline.guider(guider_data)
# Perform scheduler step using the predicted output
data.latents_dtype = data.latents.dtype
data.latents = pipeline.scheduler.step(data.noise_pred, t, data.latents, **data.extra_step_kwargs, return_dict=False)[0]
data.latents = pipeline.scheduler.step(data.noise_pred, t, data.latents, **data.extra_step_kwargs, **scheduler_step_kwargs, return_dict=False)[0]
if data.latents.dtype != data.latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
@@ -2328,7 +2304,6 @@ class StableDiffusionXLDenoiseStep(PipelineBlock):
if i == len(data.timesteps) - 1 or ((i + 1) > data.num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0):
progress_bar.update()
pipeline.guider.reset_guider(pipeline)
self.add_block_state(state, data)
return pipeline, state
@@ -2341,12 +2316,11 @@ class StableDiffusionXLControlNetDenoiseStep(PipelineBlock):
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("guider", CFGGuider, obj=CFGGuider()),
ComponentSpec("guider", GuiderType, obj=ClassifierFreeGuidance()),
ComponentSpec("scheduler", KarrasDiffusionSchedulers),
ComponentSpec("unet", UNet2DConditionModel),
ComponentSpec("controlnet", ControlNetModel),
ComponentSpec("control_image_processor", VaeImageProcessor, obj=VaeImageProcessor(do_convert_rgb=True, do_normalize=False)),
ComponentSpec("controlnet_guider", CFGGuider, obj=CFGGuider()),
]
@property
@@ -2362,12 +2336,9 @@ class StableDiffusionXLControlNetDenoiseStep(PipelineBlock):
InputParam("controlnet_conditioning_scale", default=1.0),
InputParam("guess_mode", default=False),
InputParam("num_images_per_prompt", default=1),
InputParam("guidance_scale", default=5.0),
InputParam("guidance_rescale", default=0.0),
InputParam("cross_attention_kwargs"),
InputParam("generator"),
InputParam("eta", default=0.0),
InputParam("guider_kwargs"),
]
@property
@@ -2514,8 +2485,8 @@ class StableDiffusionXLControlNetDenoiseStep(PipelineBlock):
image = components.control_image_processor.preprocess(image, height=height, width=width, crops_coords=crops_coords, resize_mode="fill").to(dtype=torch.float32)
else:
image = components.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
@@ -2523,9 +2494,7 @@ class StableDiffusionXLControlNetDenoiseStep(PipelineBlock):
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs with self -> components
@@ -2556,14 +2525,12 @@ class StableDiffusionXLControlNetDenoiseStep(PipelineBlock):
data.num_channels_unet = pipeline.unet.config.in_channels
# (1) prepare controlnet inputs
data.device = pipeline._execution_device
data.height, data.width = data.latents.shape[-2:]
data.height = data.height * pipeline.vae_scale_factor
data.width = data.width * pipeline.vae_scale_factor
controlnet = pipeline.controlnet._orig_mod if is_compiled_module(pipeline.controlnet) else pipeline.controlnet
controlnet = unwrap_module(pipeline.controlnet)
# (1.1)
# control_guidance_start/control_guidance_end (align format)
@@ -2641,72 +2608,30 @@ class StableDiffusionXLControlNetDenoiseStep(PipelineBlock):
data.controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
# (2) Prepare conditional inputs for unet using the guider
# adding default guider arguments: disable_guidance, guidance_scale, guidance_rescale
data.disable_guidance = True if pipeline.unet.config.time_cond_proj_dim is not None else False
data.guider_kwargs = data.guider_kwargs or {}
data.guider_kwargs = {
**data.guider_kwargs,
"disable_guidance": data.disable_guidance,
"guidance_scale": data.guidance_scale,
"guidance_rescale": data.guidance_rescale,
"batch_size": data.batch_size * data.num_images_per_prompt,
}
pipeline.guider.set_guider(pipeline, data.guider_kwargs)
data.prompt_embeds = pipeline.guider.prepare_input(
data.prompt_embeds,
data.negative_prompt_embeds,
)
data.add_time_ids = pipeline.guider.prepare_input(
data.add_time_ids,
data.negative_add_time_ids,
)
data.pooled_prompt_embeds = pipeline.guider.prepare_input(
data.pooled_prompt_embeds,
data.negative_pooled_prompt_embeds,
)
if data.num_channels_unet == 9:
data.mask = pipeline.guider.prepare_input(data.mask, data.mask)
data.masked_image_latents = pipeline.guider.prepare_input(data.masked_image_latents, data.masked_image_latents)
data.added_cond_kwargs = {
"text_embeds": data.pooled_prompt_embeds,
"time_ids": data.add_time_ids,
}
if data.ip_adapter_embeds is not None:
data.ip_adapter_embeds = pipeline.guider.prepare_input(data.ip_adapter_embeds, data.negative_ip_adapter_embeds)
data.added_cond_kwargs["image_embeds"] = data.ip_adapter_embeds
# (3) Prepare conditional inputs for controlnet using the guider
data.controlnet_disable_guidance = True if data.disable_guidance or data.guess_mode else False
data.controlnet_guider_kwargs = data.guider_kwargs or {}
data.controlnet_guider_kwargs = {
**data.controlnet_guider_kwargs,
"disable_guidance": data.controlnet_disable_guidance,
"guidance_scale": data.guidance_scale,
"guidance_rescale": data.guidance_rescale,
"batch_size": data.batch_size * data.num_images_per_prompt,
}
pipeline.controlnet_guider.set_guider(pipeline, data.controlnet_guider_kwargs)
data.controlnet_prompt_embeds = pipeline.controlnet_guider.prepare_input(data.prompt_embeds)
data.controlnet_added_cond_kwargs = {
"text_embeds": pipeline.controlnet_guider.prepare_input(data.pooled_prompt_embeds),
"time_ids": pipeline.controlnet_guider.prepare_input(data.add_time_ids),
}
data.control_image = pipeline.controlnet_guider.prepare_input(data.control_image, data.control_image)
if data.disable_guidance:
pipeline.guider.disable()
else:
pipeline.guider.enable()
# (4) Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
data.extra_step_kwargs = self.prepare_extra_step_kwargs(pipeline, data.generator, data.eta)
data.num_warmup_steps = max(len(data.timesteps) - data.num_inference_steps * pipeline.scheduler.order, 0)
pipeline.guider.set_input_fields(
prompt_embeds=("prompt_embeds", "negative_prompt_embeds"),
add_time_ids=("add_time_ids", "negative_add_time_ids"),
pooled_prompt_embeds=("pooled_prompt_embeds", "negative_pooled_prompt_embeds"),
ip_adapter_embeds=("ip_adapter_embeds", "negative_ip_adapter_embeds"),
)
# (5) Denoise loop
with pipeline.progress_bar(total=data.num_inference_steps) as progress_bar:
for i, t in enumerate(data.timesteps):
# prepare latents for unet using the guider
data.latent_model_input = pipeline.guider.prepare_input(data.latents, data.latents)
pipeline.guider.set_state(step=i, num_inference_steps=data.num_inference_steps, timestep=t)
guider_data = pipeline.guider.prepare_inputs(data)
# prepare latents for controlnet using the guider
data.control_model_input = pipeline.controlnet_guider.prepare_input(data.latents, data.latents)
data.scaled_latents = pipeline.scheduler.scale_model_input(data.latents, t)
if isinstance(data.controlnet_keep[i], list):
data.cond_scale = [c * s for c, s in zip(data.controlnet_conditioning_scale, data.controlnet_keep[i])]
@@ -2715,52 +2640,72 @@ class StableDiffusionXLControlNetDenoiseStep(PipelineBlock):
if isinstance(data.controlnet_cond_scale, list):
data.controlnet_cond_scale = data.controlnet_cond_scale[0]
data.cond_scale = data.controlnet_cond_scale * data.controlnet_keep[i]
for batch in guider_data:
pipeline.guider.prepare_models(pipeline.unet)
# Prepare additional conditionings
batch.added_cond_kwargs = {
"text_embeds": batch.pooled_prompt_embeds,
"time_ids": batch.add_time_ids,
}
if batch.ip_adapter_embeds is not None:
batch.added_cond_kwargs["image_embeds"] = batch.ip_adapter_embeds
# Prepare controlnet additional conditionings
batch.controlnet_added_cond_kwargs = {
"text_embeds": batch.pooled_prompt_embeds,
"time_ids": batch.add_time_ids,
}
data.down_block_res_samples, data.mid_block_res_sample = pipeline.controlnet(
pipeline.scheduler.scale_model_input(data.control_model_input, t),
t,
encoder_hidden_states=data.controlnet_prompt_embeds,
controlnet_cond=data.control_image,
conditioning_scale=data.cond_scale,
guess_mode=data.guess_mode,
added_cond_kwargs=data.controlnet_added_cond_kwargs,
return_dict=False,
)
# Will always be run atleast once with every guider
if pipeline.guider.is_conditional or not data.guess_mode:
data.down_block_res_samples, data.mid_block_res_sample = pipeline.controlnet(
data.scaled_latents,
t,
encoder_hidden_states=batch.prompt_embeds,
controlnet_cond=data.control_image,
conditioning_scale=data.cond_scale,
guess_mode=data.guess_mode,
added_cond_kwargs=batch.controlnet_added_cond_kwargs,
return_dict=False,
)
batch.down_block_res_samples = data.down_block_res_samples
batch.mid_block_res_sample = data.mid_block_res_sample
if pipeline.guider.is_unconditional and data.guess_mode:
batch.down_block_res_samples = [torch.zeros_like(d) for d in data.down_block_res_samples]
batch.mid_block_res_sample = torch.zeros_like(data.mid_block_res_sample)
# Prepare for inpainting
if data.num_channels_unet == 9:
data.scaled_latents = torch.cat([data.scaled_latents, data.mask, data.masked_image_latents], dim=1)
# when we apply guidance for unet, but not for controlnet:
# add 0 to the unconditional batch
data.down_block_res_samples = pipeline.guider.prepare_input(
data.down_block_res_samples, [torch.zeros_like(d) for d in data.down_block_res_samples]
)
data.mid_block_res_sample = pipeline.guider.prepare_input(
data.mid_block_res_sample, torch.zeros_like(data.mid_block_res_sample)
)
batch.noise_pred = pipeline.unet(
data.scaled_latents,
t,
encoder_hidden_states=batch.prompt_embeds,
timestep_cond=data.timestep_cond,
cross_attention_kwargs=data.cross_attention_kwargs,
added_cond_kwargs=batch.added_cond_kwargs,
down_block_additional_residuals=batch.down_block_res_samples,
mid_block_additional_residual=batch.mid_block_res_sample,
return_dict=False,
)[0]
pipeline.guider.cleanup_models(pipeline.unet)
# Perform guidance
data.noise_pred, scheduler_step_kwargs = pipeline.guider(guider_data)
data.latent_model_input = pipeline.scheduler.scale_model_input(data.latent_model_input, t)
if data.num_channels_unet == 9:
data.latent_model_input = torch.cat([data.latent_model_input, data.mask, data.masked_image_latents], dim=1)
data.noise_pred = pipeline.unet(
data.latent_model_input,
t,
encoder_hidden_states=data.prompt_embeds,
timestep_cond=data.timestep_cond,
cross_attention_kwargs=data.cross_attention_kwargs,
added_cond_kwargs=data.added_cond_kwargs,
down_block_additional_residuals=data.down_block_res_samples,
mid_block_additional_residual=data.mid_block_res_sample,
return_dict=False,
)[0]
# perform guidance
data.noise_pred = pipeline.guider.apply_guidance(data.noise_pred, timestep=t, latents=data.latents)
# compute the previous noisy sample x_t -> x_t-1
# Perform scheduler step using the predicted output
data.latents_dtype = data.latents.dtype
data.latents = pipeline.scheduler.step(data.noise_pred, t, data.latents, **data.extra_step_kwargs, return_dict=False)[0]
data.latents = pipeline.scheduler.step(data.noise_pred, t, data.latents, **data.extra_step_kwargs, **scheduler_step_kwargs, return_dict=False)[0]
if data.latents.dtype != data.latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
data.latents = data.latents.to(data.latents_dtype)
if data.num_channels_unet == 4 and data.mask is not None and data.image_latents is not None:
data.init_latents_proper = data.image_latents
@@ -2774,9 +2719,6 @@ class StableDiffusionXLControlNetDenoiseStep(PipelineBlock):
if i == len(data.timesteps) - 1 or ((i + 1) > data.num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0):
progress_bar.update()
pipeline.guider.reset_guider(pipeline)
pipeline.controlnet_guider.reset_guider(pipeline)
self.add_block_state(state, data)
@@ -2792,8 +2734,7 @@ class StableDiffusionXLControlNetUnionDenoiseStep(PipelineBlock):
ComponentSpec("unet", UNet2DConditionModel),
ComponentSpec("controlnet", ControlNetUnionModel),
ComponentSpec("scheduler", KarrasDiffusionSchedulers),
ComponentSpec("guider", CFGGuider, obj=CFGGuider()),
ComponentSpec("controlnet_guider", CFGGuider, obj=CFGGuider()),
ComponentSpec("guider", GuiderType, obj=ClassifierFreeGuidance()),
ComponentSpec("control_image_processor", VaeImageProcessor, obj=VaeImageProcessor(do_convert_rgb=True, do_normalize=False)),
]
@@ -2810,12 +2751,9 @@ class StableDiffusionXLControlNetUnionDenoiseStep(PipelineBlock):
InputParam("controlnet_conditioning_scale", default=1.0),
InputParam("guess_mode", default=False),
InputParam("num_images_per_prompt", default=1),
InputParam("guidance_scale", default=5.0),
InputParam("guidance_rescale", default=0.0),
InputParam("cross_attention_kwargs"),
InputParam("generator"),
InputParam("eta", default=0.0),
InputParam("guider_kwargs")
]
@property
@@ -3008,7 +2946,7 @@ class StableDiffusionXLControlNetUnionDenoiseStep(PipelineBlock):
data.height = data.height * pipeline.vae_scale_factor
data.width = data.width * pipeline.vae_scale_factor
controlnet = pipeline.controlnet._orig_mod if is_compiled_module(pipeline.controlnet) else pipeline.controlnet
controlnet = unwrap_module(pipeline.controlnet)
# (1.1)
# control guidance
@@ -3058,7 +2996,6 @@ class StableDiffusionXLControlNetUnionDenoiseStep(PipelineBlock):
crops_coords=data.crops_coords,
)
data.height, data.width = data.control_image[idx].shape[-2:]
# (1.6)
# controlnet_keep
@@ -3072,80 +3009,32 @@ class StableDiffusionXLControlNetUnionDenoiseStep(PipelineBlock):
# (2) Prepare conditional inputs for unet using the guider
# adding default guider arguments: disable_guidance, guidance_scale, guidance_rescale
data.disable_guidance = True if pipeline.unet.config.time_cond_proj_dim is not None else False
data.guider_kwargs = data.guider_kwargs or {}
data.guider_kwargs = {
**data.guider_kwargs,
"disable_guidance": data.disable_guidance,
"guidance_scale": data.guidance_scale,
"guidance_rescale": data.guidance_rescale,
"batch_size": data.batch_size * data.num_images_per_prompt,
}
pipeline.guider.set_guider(pipeline, data.guider_kwargs)
data.prompt_embeds = pipeline.guider.prepare_input(
data.prompt_embeds,
data.negative_prompt_embeds,
)
data.add_time_ids = pipeline.guider.prepare_input(
data.add_time_ids,
data.negative_add_time_ids,
)
data.pooled_prompt_embeds = pipeline.guider.prepare_input(
data.pooled_prompt_embeds,
data.negative_pooled_prompt_embeds,
)
if data.disable_guidance:
pipeline.guider.disable()
else:
pipeline.guider.enable()
if data.num_channels_unet == 9:
data.mask = pipeline.guider.prepare_input(data.mask, data.mask)
data.masked_image_latents = pipeline.guider.prepare_input(data.masked_image_latents, data.masked_image_latents)
data.added_cond_kwargs = {
"text_embeds": data.pooled_prompt_embeds,
"time_ids": data.add_time_ids,
}
if data.ip_adapter_embeds is not None:
data.ip_adapter_embeds = pipeline.guider.prepare_input(data.ip_adapter_embeds, data.negative_ip_adapter_embeds)
data.added_cond_kwargs["image_embeds"] = data.ip_adapter_embeds
# (3) Prepare conditional inputs for controlnet using the guider
data.controlnet_disable_guidance = True if data.disable_guidance or data.guess_mode else False
data.controlnet_guider_kwargs = data.guider_kwargs or {}
data.controlnet_guider_kwargs = {
**data.controlnet_guider_kwargs,
"disable_guidance": data.controlnet_disable_guidance,
"guidance_scale": data.guidance_scale,
"guidance_rescale": data.guidance_rescale,
"batch_size": data.batch_size * data.num_images_per_prompt,
}
pipeline.controlnet_guider.set_guider(pipeline, data.controlnet_guider_kwargs)
data.controlnet_prompt_embeds = pipeline.controlnet_guider.prepare_input(data.prompt_embeds)
data.controlnet_added_cond_kwargs = {
"text_embeds": pipeline.controlnet_guider.prepare_input(data.pooled_prompt_embeds),
"time_ids": pipeline.controlnet_guider.prepare_input(data.add_time_ids),
}
for idx, _ in enumerate(data.control_image):
data.control_image[idx] = pipeline.controlnet_guider.prepare_input(data.control_image[idx], data.control_image[idx])
data.control_type = (
data.control_type.reshape(1, -1)
.to(data.device, dtype=data.prompt_embeds.dtype)
)
data.control_type = data.control_type.reshape(1, -1).to(data.device, dtype=data.prompt_embeds.dtype)
repeat_by = data.batch_size * data.num_images_per_prompt // data.control_type.shape[0]
data.control_type = data.control_type.repeat_interleave(repeat_by, dim=0)
data.control_type = pipeline.controlnet_guider.prepare_input(data.control_type, data.control_type)
# (4) Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
data.extra_step_kwargs = self.prepare_extra_step_kwargs(pipeline, data.generator, data.eta)
data.num_warmup_steps = max(len(data.timesteps) - data.num_inference_steps * pipeline.scheduler.order, 0)
pipeline.guider.set_input_fields(
prompt_embeds=("prompt_embeds", "negative_prompt_embeds"),
add_time_ids=("add_time_ids", "negative_add_time_ids"),
pooled_prompt_embeds=("pooled_prompt_embeds", "negative_pooled_prompt_embeds"),
ip_adapter_embeds=("ip_adapter_embeds", "negative_ip_adapter_embeds"),
)
with pipeline.progress_bar(total=data.num_inference_steps) as progress_bar:
for i, t in enumerate(data.timesteps):
# prepare latents for unet using the guider
data.latent_model_input = pipeline.guider.prepare_input(data.latents, data.latents)
pipeline.guider.set_state(step=i, num_inference_steps=data.num_inference_steps, timestep=t)
guider_data = pipeline.guider.prepare_inputs(data)
# prepare latents for controlnet using the guider
data.control_model_input = pipeline.controlnet_guider.prepare_input(data.latents, data.latents)
data.scaled_latents = pipeline.scheduler.scale_model_input(data.latents, t)
if isinstance(data.controlnet_keep[i], list):
data.cond_scale = [c * s for c, s in zip(data.controlnet_conditioning_scale, data.controlnet_keep[i])]
@@ -3154,49 +3043,69 @@ class StableDiffusionXLControlNetUnionDenoiseStep(PipelineBlock):
if isinstance(data.controlnet_cond_scale, list):
data.controlnet_cond_scale = data.controlnet_cond_scale[0]
data.cond_scale = data.controlnet_cond_scale * data.controlnet_keep[i]
for batch in guider_data:
pipeline.guider.prepare_models(pipeline.unet)
# Prepare additional conditionings
batch.added_cond_kwargs = {
"text_embeds": batch.pooled_prompt_embeds,
"time_ids": batch.add_time_ids,
}
if batch.ip_adapter_embeds is not None:
batch.added_cond_kwargs["image_embeds"] = batch.ip_adapter_embeds
# Prepare controlnet additional conditionings
batch.controlnet_added_cond_kwargs = {
"text_embeds": batch.pooled_prompt_embeds,
"time_ids": batch.add_time_ids,
}
data.down_block_res_samples, data.mid_block_res_sample = pipeline.controlnet(
pipeline.scheduler.scale_model_input(data.control_model_input, t),
t,
encoder_hidden_states=data.controlnet_prompt_embeds,
controlnet_cond=data.control_image,
control_type=data.control_type,
control_type_idx=data.control_mode,
conditioning_scale=data.cond_scale,
guess_mode=data.guess_mode,
added_cond_kwargs=data.controlnet_added_cond_kwargs,
return_dict=False,
)
# Will always be run atleast once with every guider
if pipeline.guider.is_conditional or not data.guess_mode:
data.down_block_res_samples, data.mid_block_res_sample = pipeline.controlnet(
data.scaled_latents,
t,
encoder_hidden_states=batch.prompt_embeds,
controlnet_cond=data.control_image,
control_type=data.control_type,
control_type_idx=data.control_mode,
conditioning_scale=data.cond_scale,
guess_mode=data.guess_mode,
added_cond_kwargs=batch.controlnet_added_cond_kwargs,
return_dict=False,
)
batch.down_block_res_samples = data.down_block_res_samples
batch.mid_block_res_sample = data.mid_block_res_sample
if pipeline.guider.is_unconditional and data.guess_mode:
batch.down_block_res_samples = [torch.zeros_like(d) for d in data.down_block_res_samples]
batch.mid_block_res_sample = torch.zeros_like(data.mid_block_res_sample)
# when we apply guidance for unet, but not for controlnet:
# add 0 to the unconditional batch
data.down_block_res_samples = pipeline.guider.prepare_input(
data.down_block_res_samples, [torch.zeros_like(d) for d in data.down_block_res_samples]
)
data.mid_block_res_sample = pipeline.guider.prepare_input(
data.mid_block_res_sample, torch.zeros_like(data.mid_block_res_sample)
)
if data.num_channels_unet == 9:
data.scaled_latents = torch.cat([data.scaled_latents, data.mask, data.masked_image_latents], dim=1)
data.latent_model_input = pipeline.scheduler.scale_model_input(data.latent_model_input, t)
if data.num_channels_unet == 9:
data.latent_model_input = torch.cat([data.latent_model_input, data.mask, data.masked_image_latents], dim=1)
batch.noise_pred = pipeline.unet(
data.scaled_latents,
t,
encoder_hidden_states=batch.prompt_embeds,
timestep_cond=data.timestep_cond,
cross_attention_kwargs=data.cross_attention_kwargs,
added_cond_kwargs=batch.added_cond_kwargs,
down_block_additional_residuals=batch.down_block_res_samples,
mid_block_additional_residual=batch.mid_block_res_sample,
return_dict=False,
)[0]
pipeline.guider.cleanup_models(pipeline.unet)
# Perform guidance
data.noise_pred, scheduler_step_kwargs = pipeline.guider(guider_data)
data.noise_pred = pipeline.unet(
data.latent_model_input,
t,
encoder_hidden_states=data.prompt_embeds,
timestep_cond=data.timestep_cond,
cross_attention_kwargs=data.cross_attention_kwargs,
added_cond_kwargs=data.added_cond_kwargs,
down_block_additional_residuals=data.down_block_res_samples,
mid_block_additional_residual=data.mid_block_res_sample,
return_dict=False,
)[0]
# perform guidance
data.noise_pred = pipeline.guider.apply_guidance(data.noise_pred, timestep=t, latents=data.latents)
# compute the previous noisy sample x_t -> x_t-1
# Perform scheduler step using the predicted output
data.latents_dtype = data.latents.dtype
data.latents = pipeline.scheduler.step(data.noise_pred, t, data.latents, **data.extra_step_kwargs, return_dict=False)[0]
data.latents = pipeline.scheduler.step(data.noise_pred, t, data.latents, **data.extra_step_kwargs, **scheduler_step_kwargs, return_dict=False)[0]
if data.latents.dtype != data.latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
@@ -3209,14 +3118,10 @@ class StableDiffusionXLControlNetUnionDenoiseStep(PipelineBlock):
data.init_latents_proper = pipeline.scheduler.add_noise(
data.init_latents_proper, data.noise, torch.tensor([data.noise_timestep])
)
data.latents = (1 - data.mask) * data.init_latents_proper + data.mask * data.latents
if i == len(data.timesteps) - 1 or ((i + 1) > data.num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0):
progress_bar.update()
pipeline.guider.reset_guider(pipeline)
pipeline.controlnet_guider.reset_guider(pipeline)
self.add_block_state(state, data)
@@ -3543,6 +3448,11 @@ class StableDiffusionXLAutoPipeline(SequentialPipelineBlocks):
"- to run the ip_adapter workflow, you need to provide `ip_adapter_image`\n" + \
"- for text-to-image generation, all you need to provide is `prompt`"
# TODO(yiyi, aryan): We need another step before text encoder to set the `num_inference_steps` attribute for guider so that
# things like when to do guidance and how many conditions to be prepared can be determined. Currently, this is done by
# always assuming you want to do guidance in the Guiders. So, negative embeddings are prepared regardless of what the
# configuration of guider is.
# block mapping
TEXT2IMAGE_BLOCKS = OrderedDict([
("text_encoder", StableDiffusionXLTextEncoderStep),
@@ -3664,7 +3574,6 @@ SDXL_INPUTS_SCHEMA = {
"negative_prompt": InputParam("negative_prompt", type_hint=Union[str, List[str]], description="The prompt or prompts not to guide the image generation"),
"negative_prompt_2": InputParam("negative_prompt_2", type_hint=Union[str, List[str]], description="The negative prompt or prompts for text_encoder_2"),
"cross_attention_kwargs": InputParam("cross_attention_kwargs", type_hint=Optional[dict], description="Kwargs dictionary passed to the AttentionProcessor"),
"guidance_scale": InputParam("guidance_scale", type_hint=float, default=5.0, description="Classifier-Free Diffusion Guidance scale"),
"clip_skip": InputParam("clip_skip", type_hint=Optional[int], description="Number of layers to skip in CLIP text encoder"),
"image": InputParam("image", type_hint=PipelineImageInput, required=True, description="The image(s) to modify for img2img or inpainting"),
"mask_image": InputParam("mask_image", type_hint=PipelineImageInput, required=True, description="Mask image for inpainting, white pixels will be repainted"),
@@ -3689,9 +3598,7 @@ SDXL_INPUTS_SCHEMA = {
"negative_crops_coords_top_left": InputParam("negative_crops_coords_top_left", type_hint=Tuple[int, int], default=(0, 0), description="Negative conditioning crop coordinates"),
"aesthetic_score": InputParam("aesthetic_score", type_hint=float, default=6.0, description="Simulates aesthetic score of generated image"),
"negative_aesthetic_score": InputParam("negative_aesthetic_score", type_hint=float, default=2.0, description="Simulates negative aesthetic score"),
"guidance_rescale": InputParam("guidance_rescale", type_hint=float, default=0.0, description="Guidance rescale factor to fix overexposure"),
"eta": InputParam("eta", type_hint=float, default=0.0, description="Parameter η in the DDIM paper"),
"guider_kwargs": InputParam("guider_kwargs", type_hint=Optional[Dict[str, Any]], description="Kwargs dictionary passed to the Guider"),
"output_type": InputParam("output_type", type_hint=str, default="pil", description="Output format (pil/tensor/np.array)"),
"return_dict": InputParam("return_dict", type_hint=bool, default=True, description="Whether to return a StableDiffusionXLPipelineOutput"),
"ip_adapter_image": InputParam("ip_adapter_image", type_hint=PipelineImageInput, required=True, description="Image(s) to be used as IP adapter"),
@@ -3757,4 +3664,4 @@ SDXL_INTERMEDIATE_OUTPUTS_SCHEMA = {
SDXL_OUTPUTS_SCHEMA = {
"images": OutputParam("images", type_hint=Union[Tuple[Union[List[PIL.Image.Image], List[torch.Tensor], List[np.array]]], StableDiffusionXLPipelineOutput], description="The final generated images")
}
}

View File

@@ -90,6 +90,11 @@ def is_compiled_module(module) -> bool:
return isinstance(module, torch._dynamo.eval_frame.OptimizedModule)
def unwrap_module(module):
"""Unwraps a module if it was compiled with torch.compile()"""
return module._orig_mod if is_compiled_module(module) else module
def fourier_filter(x_in: "torch.Tensor", threshold: int, scale: int) -> "torch.Tensor":
"""Fourier filter as introduced in FreeU (https://arxiv.org/abs/2309.11497).