1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Improve docstrings and type hints in scheduling_dpmsolver_singlestep.py (#12798)

feat: add flow sigmas, dynamic shifting, and refine type hints in DPMSolverSinglestepScheduler
This commit is contained in:
David El Malih
2025-12-08 17:58:57 +01:00
committed by sayakpaul
parent a73981fe17
commit b53bd8372b

View File

@@ -86,42 +86,42 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
num_train_timesteps (`int`, defaults to `1000`):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
beta_start (`float`, defaults to `0.0001`):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
beta_end (`float`, defaults to `0.02`):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
beta_schedule (`"linear"`, `"scaled_linear"`, or `"squaredcos_cap_v2"`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, *optional*):
trained_betas (`np.ndarray` or `List[float]`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
solver_order (`int`, defaults to 2):
solver_order (`int`, defaults to `2`):
The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
sampling, and `solver_order=3` for unconditional sampling.
prediction_type (`str`, defaults to `epsilon`, *optional*):
prediction_type (`"epsilon"`, `"sample"`, `"v_prediction"`, or `"flow_prediction"`, defaults to `"epsilon"`):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://huggingface.co/papers/2210.02303) paper).
`sample` (directly predicts the noisy sample`), `v_prediction` (see section 2.4 of [Imagen
Video](https://huggingface.co/papers/2210.02303) paper), or `flow_prediction`.
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
dynamic_thresholding_ratio (`float`, defaults to 0.995):
dynamic_thresholding_ratio (`float`, defaults to `0.995`):
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
sample_max_value (`float`, defaults to 1.0):
sample_max_value (`float`, defaults to `1.0`):
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
`algorithm_type="dpmsolver++"`.
algorithm_type (`str`, defaults to `dpmsolver++`):
Algorithm type for the solver; can be `dpmsolver` or `dpmsolver++` or `sde-dpmsolver++`. The `dpmsolver`
algorithm_type (`"dpmsolver"`, `"dpmsolver++"`, or `"sde-dpmsolver++"`, defaults to `"dpmsolver++"`):
Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, or `sde-dpmsolver++`. The `dpmsolver`
type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927) paper, and the
`dpmsolver++` type implements the algorithms in the [DPMSolver++](https://huggingface.co/papers/2211.01095)
paper. It is recommended to use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided
sampling like in Stable Diffusion.
solver_type (`str`, defaults to `midpoint`):
solver_type (`"midpoint"` or `"heun"`, defaults to `"midpoint"`):
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
lower_order_final (`bool`, defaults to `True`):
lower_order_final (`bool`, defaults to `False`):
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
@@ -132,15 +132,23 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
final_sigmas_type (`str`, *optional*, defaults to `"zero"`):
use_flow_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use flow sigmas for step sizes in the noise schedule during the sampling process.
flow_shift (`float`, *optional*, defaults to `1.0`):
The flow shift parameter for flow-based models.
final_sigmas_type (`"zero"` or `"sigma_min"`, *optional*, defaults to `"zero"`):
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
sigma is the same as the last sigma in the training schedule. If `"zero"`, the final sigma is set to 0.
lambda_min_clipped (`float`, defaults to `-inf`):
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
cosine (`squaredcos_cap_v2`) noise schedule.
variance_type (`str`, *optional*):
Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
contains the predicted Gaussian variance.
variance_type (`"learned"` or `"learned_range"`, *optional*):
Set to `"learned"` or `"learned_range"` for diffusion models that predict variance. If set, the model's
output contains the predicted Gaussian variance.
use_dynamic_shifting (`bool`, defaults to `False`):
Whether to use dynamic shifting for the noise schedule.
time_shift_type (`"exponential"`, defaults to `"exponential"`):
The type of time shifting to apply.
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
@@ -152,27 +160,27 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[np.ndarray] = None,
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
solver_order: int = 2,
prediction_type: str = "epsilon",
prediction_type: Literal["epsilon", "sample", "v_prediction", "flow_prediction"] = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
algorithm_type: str = "dpmsolver++",
solver_type: str = "midpoint",
algorithm_type: Literal["dpmsolver", "dpmsolver++", "sde-dpmsolver++"] = "dpmsolver++",
solver_type: Literal["midpoint", "heun"] = "midpoint",
lower_order_final: bool = False,
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
use_beta_sigmas: Optional[bool] = False,
use_flow_sigmas: Optional[bool] = False,
flow_shift: Optional[float] = 1.0,
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
final_sigmas_type: Optional[Literal["zero", "sigma_min"]] = "zero",
lambda_min_clipped: float = -float("inf"),
variance_type: Optional[str] = None,
variance_type: Optional[Literal["learned", "learned_range"]] = None,
use_dynamic_shifting: bool = False,
time_shift_type: str = "exponential",
):
time_shift_type: Literal["exponential"] = "exponential",
) -> None:
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
@@ -242,6 +250,10 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
Returns:
`List[int]`:
The list of solver orders for each timestep.
"""
steps = num_inference_steps
order = self.config.solver_order
@@ -276,21 +288,29 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
return orders
@property
def step_index(self):
def step_index(self) -> Optional[int]:
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
Returns:
`int` or `None`:
The current step index.
"""
return self._step_index
@property
def begin_index(self):
def begin_index(self) -> Optional[int]:
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
Returns:
`int` or `None`:
The begin index.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
def set_begin_index(self, begin_index: int = 0) -> None:
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
@@ -302,19 +322,21 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
def set_timesteps(
self,
num_inference_steps: int = None,
device: Union[str, torch.device] = None,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
mu: Optional[float] = None,
timesteps: Optional[List[int]] = None,
):
) -> None:
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
num_inference_steps (`int`, *optional*):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
mu (`float`, *optional*):
The mu parameter for dynamic shifting.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of equal spacing between timesteps schedule is used. If `timesteps` is
@@ -453,7 +475,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
return sample
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
def _sigma_to_t(self, sigma: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
"""
Convert sigma values to corresponding timestep values through interpolation.
@@ -490,7 +512,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
return t
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
def _sigma_to_alpha_sigma_t(self, sigma):
def _sigma_to_alpha_sigma_t(self, sigma: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Convert sigma values to alpha_t and sigma_t values.
@@ -512,7 +534,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
return alpha_t, sigma_t
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""
Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
Models](https://huggingface.co/papers/2206.00364).
@@ -637,7 +659,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
@@ -733,7 +755,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -797,7 +819,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -908,7 +930,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -1030,8 +1052,8 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
order: int = None,
sample: Optional[torch.Tensor] = None,
order: Optional[int] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -1125,7 +1147,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
return step_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
def _init_step_index(self, timestep):
def _init_step_index(self, timestep: Union[int, torch.Tensor]) -> None:
"""
Initialize the step_index counter for the scheduler.
@@ -1146,7 +1168,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
model_output: torch.Tensor,
timestep: Union[int, torch.Tensor],
sample: torch.Tensor,
generator=None,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
@@ -1156,11 +1178,13 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`int`):
timestep (`int` or `torch.Tensor`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
return_dict (`bool`):
generator (`torch.Generator`, *optional*):
A random number generator for stochastic sampling.
return_dict (`bool`, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
Returns:
@@ -1277,5 +1301,5 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
noisy_samples = alpha_t * original_samples + sigma_t * noise
return noisy_samples
def __len__(self):
def __len__(self) -> int:
return self.config.num_train_timesteps