mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Add exponential sigmas to other schedulers and update docs (#9518)
This commit is contained in:
@@ -46,11 +46,12 @@ Many schedulers are implemented from the [k-diffusion](https://github.com/crowso
|
||||
| N/A | [`UniPCMultistepScheduler`] | |
|
||||
|
||||
## Noise schedules and schedule types
|
||||
| A1111/k-diffusion | 🤗 Diffusers |
|
||||
|---------------------|----------------------------------------|
|
||||
| Karras | init with `use_karras_sigmas=True` |
|
||||
| sgm_uniform | init with `timestep_spacing="trailing"`|
|
||||
| simple | init with `timestep_spacing="trailing"`|
|
||||
| A1111/k-diffusion | 🤗 Diffusers |
|
||||
|--------------------------|----------------------------------------------------------------------------|
|
||||
| Karras | init with `use_karras_sigmas=True` |
|
||||
| sgm_uniform | init with `timestep_spacing="trailing"` |
|
||||
| simple | init with `timestep_spacing="trailing"` |
|
||||
| exponential | init with `timestep_spacing="linspace"`, `use_exponential_sigmas=True` |
|
||||
|
||||
All schedulers are built from the base [`SchedulerMixin`] class which implements low level utilities shared by all schedulers.
|
||||
|
||||
|
||||
@@ -111,6 +111,8 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
||||
the sigmas are determined according to a sequence of noise levels {σi}.
|
||||
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
||||
timestep_spacing (`str`, defaults to `"linspace"`):
|
||||
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
||||
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
||||
@@ -138,9 +140,12 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
solver_type: str = "logrho",
|
||||
lower_order_final: bool = True,
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
use_exponential_sigmas: Optional[bool] = False,
|
||||
timestep_spacing: str = "linspace",
|
||||
steps_offset: int = 0,
|
||||
):
|
||||
if sum([self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
raise ValueError("Only one of `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used.")
|
||||
if trained_betas is not None:
|
||||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||||
elif beta_schedule == "linear":
|
||||
@@ -255,6 +260,9 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
||||
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
||||
elif self.config.use_exponential_sigmas:
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||||
else:
|
||||
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
||||
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
|
||||
@@ -366,6 +374,28 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
||||
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""Constructs an exponential noise schedule."""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
|
||||
return sigmas
|
||||
|
||||
def convert_model_output(
|
||||
self,
|
||||
model_output: torch.Tensor,
|
||||
|
||||
@@ -161,6 +161,8 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
||||
the sigmas are determined according to a sequence of noise levels {σi}.
|
||||
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
||||
use_lu_lambdas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use the uniform-logSNR for step sizes proposed by Lu's DPM-Solver in the noise schedule during
|
||||
the sampling process. If `True`, the sigmas and time steps are determined according to a sequence of
|
||||
@@ -206,6 +208,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
lower_order_final: bool = True,
|
||||
euler_at_final: bool = False,
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
use_exponential_sigmas: Optional[bool] = False,
|
||||
use_lu_lambdas: Optional[bool] = False,
|
||||
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
||||
lambda_min_clipped: float = -float("inf"),
|
||||
@@ -214,6 +217,8 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
steps_offset: int = 0,
|
||||
rescale_betas_zero_snr: bool = False,
|
||||
):
|
||||
if sum([self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
raise ValueError("Only one of `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used.")
|
||||
if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
|
||||
deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
|
||||
deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)
|
||||
@@ -330,6 +335,8 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
raise ValueError("Cannot use `timesteps` with `config.use_karras_sigmas = True`")
|
||||
if timesteps is not None and self.config.use_lu_lambdas:
|
||||
raise ValueError("Cannot use `timesteps` with `config.use_lu_lambdas = True`")
|
||||
if timesteps is not None and self.config.use_exponential_sigmas:
|
||||
raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
|
||||
|
||||
if timesteps is not None:
|
||||
timesteps = np.array(timesteps).astype(np.int64)
|
||||
@@ -378,6 +385,9 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
lambdas = self._convert_to_lu(in_lambdas=lambdas, num_inference_steps=num_inference_steps)
|
||||
sigmas = np.exp(lambdas)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
||||
elif self.config.use_exponential_sigmas:
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||||
else:
|
||||
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
||||
|
||||
@@ -510,6 +520,28 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
lambdas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return lambdas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
||||
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""Constructs an exponential noise schedule."""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
|
||||
return sigmas
|
||||
|
||||
def convert_model_output(
|
||||
self,
|
||||
model_output: torch.Tensor,
|
||||
|
||||
@@ -124,6 +124,8 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
||||
the sigmas are determined according to a sequence of noise levels {σi}.
|
||||
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
||||
lambda_min_clipped (`float`, defaults to `-inf`):
|
||||
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
|
||||
cosine (`squaredcos_cap_v2`) noise schedule.
|
||||
@@ -158,11 +160,14 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
lower_order_final: bool = True,
|
||||
euler_at_final: bool = False,
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
use_exponential_sigmas: Optional[bool] = False,
|
||||
lambda_min_clipped: float = -float("inf"),
|
||||
variance_type: Optional[str] = None,
|
||||
timestep_spacing: str = "linspace",
|
||||
steps_offset: int = 0,
|
||||
):
|
||||
if sum([self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
raise ValueError("Only one of `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used.")
|
||||
if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
|
||||
deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
|
||||
deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)
|
||||
@@ -213,6 +218,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
self._step_index = None
|
||||
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||||
self.use_karras_sigmas = use_karras_sigmas
|
||||
self.use_exponential_sigmas = use_exponential_sigmas
|
||||
|
||||
@property
|
||||
def step_index(self):
|
||||
@@ -267,6 +273,9 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
||||
timesteps = timesteps.copy().astype(np.int64)
|
||||
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
||||
elif self.config.use_exponential_sigmas:
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||||
else:
|
||||
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
||||
sigma_max = (
|
||||
@@ -385,6 +394,28 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
||||
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""Constructs an exponential noise schedule."""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.convert_model_output
|
||||
def convert_model_output(
|
||||
self,
|
||||
|
||||
@@ -160,6 +160,8 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
||||
the sigmas are determined according to a sequence of noise levels {σi}.
|
||||
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
||||
noise_sampler_seed (`int`, *optional*, defaults to `None`):
|
||||
The random seed to use for the noise sampler. If `None`, a random seed is generated.
|
||||
timestep_spacing (`str`, defaults to `"linspace"`):
|
||||
@@ -182,10 +184,13 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
prediction_type: str = "epsilon",
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
use_exponential_sigmas: Optional[bool] = False,
|
||||
noise_sampler_seed: Optional[int] = None,
|
||||
timestep_spacing: str = "linspace",
|
||||
steps_offset: int = 0,
|
||||
):
|
||||
if sum([self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
raise ValueError("Only one of `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used.")
|
||||
if trained_betas is not None:
|
||||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||||
elif beta_schedule == "linear":
|
||||
@@ -341,6 +346,9 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
if self.config.use_karras_sigmas:
|
||||
sigmas = self._convert_to_karras(in_sigmas=sigmas)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||||
elif self.config.use_exponential_sigmas:
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||||
|
||||
second_order_timesteps = self._second_order_timesteps(sigmas, log_sigmas)
|
||||
|
||||
@@ -421,6 +429,28 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
||||
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""Constructs an exponential noise schedule."""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
|
||||
return sigmas
|
||||
|
||||
@property
|
||||
def state_in_first_order(self):
|
||||
return self.sample is None
|
||||
|
||||
@@ -123,6 +123,8 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
||||
the sigmas are determined according to a sequence of noise levels {σi}.
|
||||
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
||||
final_sigmas_type (`str`, *optional*, defaults to `"zero"`):
|
||||
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
||||
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
||||
@@ -154,10 +156,13 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
||||
solver_type: str = "midpoint",
|
||||
lower_order_final: bool = False,
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
use_exponential_sigmas: Optional[bool] = False,
|
||||
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
||||
lambda_min_clipped: float = -float("inf"),
|
||||
variance_type: Optional[str] = None,
|
||||
):
|
||||
if sum([self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
raise ValueError("Only one of `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used.")
|
||||
if algorithm_type == "dpmsolver":
|
||||
deprecation_message = "algorithm_type `dpmsolver` is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
|
||||
deprecate("algorithm_types=dpmsolver", "1.0.0", deprecation_message)
|
||||
@@ -300,6 +305,8 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
||||
raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps`.")
|
||||
if timesteps is not None and self.config.use_karras_sigmas:
|
||||
raise ValueError("Cannot use `timesteps` when `config.use_karras_sigmas=True`.")
|
||||
if timesteps is not None and self.config.use_exponential_sigmas:
|
||||
raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
|
||||
|
||||
num_inference_steps = num_inference_steps or len(timesteps)
|
||||
self.num_inference_steps = num_inference_steps
|
||||
@@ -323,6 +330,9 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigmas = np.flip(sigmas).copy()
|
||||
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
||||
elif self.config.use_exponential_sigmas:
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||||
else:
|
||||
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
||||
|
||||
@@ -452,6 +462,28 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
||||
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""Constructs an exponential noise schedule."""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
|
||||
return sigmas
|
||||
|
||||
def convert_model_output(
|
||||
self,
|
||||
model_output: torch.Tensor,
|
||||
|
||||
@@ -197,6 +197,8 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
rescale_betas_zero_snr: bool = False,
|
||||
final_sigmas_type: str = "zero", # can be "zero" or "sigma_min"
|
||||
):
|
||||
if sum([self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
raise ValueError("Only one of `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used.")
|
||||
if trained_betas is not None:
|
||||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||||
elif beta_schedule == "linear":
|
||||
@@ -338,10 +340,6 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
raise ValueError("Cannot set `timesteps` with `config.use_karras_sigmas = True`.")
|
||||
if timesteps is not None and self.config.use_exponential_sigmas:
|
||||
raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
|
||||
if self.config.use_exponential_sigmas and self.config.use_karras_sigmas:
|
||||
raise ValueError(
|
||||
"Cannot set both `config.use_exponential_sigmas = True` and config.use_karras_sigmas = True`"
|
||||
)
|
||||
if (
|
||||
timesteps is not None
|
||||
and self.config.timestep_type == "continuous"
|
||||
|
||||
@@ -97,6 +97,8 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
||||
the sigmas are determined according to a sequence of noise levels {σi}.
|
||||
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
||||
timestep_spacing (`str`, defaults to `"linspace"`):
|
||||
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
||||
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
||||
@@ -117,11 +119,14 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
prediction_type: str = "epsilon",
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
use_exponential_sigmas: Optional[bool] = False,
|
||||
clip_sample: Optional[bool] = False,
|
||||
clip_sample_range: float = 1.0,
|
||||
timestep_spacing: str = "linspace",
|
||||
steps_offset: int = 0,
|
||||
):
|
||||
if sum([self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
raise ValueError("Only one of `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used.")
|
||||
if trained_betas is not None:
|
||||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||||
elif beta_schedule == "linear":
|
||||
@@ -251,6 +256,8 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
|
||||
if timesteps is not None and self.config.use_karras_sigmas:
|
||||
raise ValueError("Cannot use `timesteps` with `config.use_karras_sigmas = True`")
|
||||
if timesteps is not None and self.config.use_exponential_sigmas:
|
||||
raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
|
||||
|
||||
num_inference_steps = num_inference_steps or len(timesteps)
|
||||
self.num_inference_steps = num_inference_steps
|
||||
@@ -286,6 +293,9 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
if self.config.use_karras_sigmas:
|
||||
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||||
elif self.config.use_exponential_sigmas:
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||||
|
||||
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
|
||||
sigmas = torch.from_numpy(sigmas).to(device=device)
|
||||
@@ -354,6 +364,28 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
||||
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""Constructs an exponential noise schedule."""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
|
||||
return sigmas
|
||||
|
||||
@property
|
||||
def state_in_first_order(self):
|
||||
return self.dt is None
|
||||
|
||||
@@ -91,6 +91,8 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
||||
the sigmas are determined according to a sequence of noise levels {σi}.
|
||||
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
||||
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
||||
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
||||
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
||||
@@ -114,10 +116,13 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
beta_schedule: str = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
use_exponential_sigmas: Optional[bool] = False,
|
||||
prediction_type: str = "epsilon",
|
||||
timestep_spacing: str = "linspace",
|
||||
steps_offset: int = 0,
|
||||
):
|
||||
if sum([self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
raise ValueError("Only one of `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used.")
|
||||
if trained_betas is not None:
|
||||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||||
elif beta_schedule == "linear":
|
||||
@@ -250,6 +255,9 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
if self.config.use_karras_sigmas:
|
||||
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
||||
elif self.config.use_exponential_sigmas:
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||||
|
||||
self.log_sigmas = torch.from_numpy(log_sigmas).to(device)
|
||||
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
|
||||
@@ -346,6 +354,28 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
||||
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""Constructs an exponential noise schedule."""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
|
||||
return sigmas
|
||||
|
||||
@property
|
||||
def state_in_first_order(self):
|
||||
return self.sample is None
|
||||
|
||||
@@ -90,6 +90,8 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
||||
the sigmas are determined according to a sequence of noise levels {σi}.
|
||||
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
||||
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
||||
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
||||
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
||||
@@ -113,10 +115,13 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
beta_schedule: str = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
use_exponential_sigmas: Optional[bool] = False,
|
||||
prediction_type: str = "epsilon",
|
||||
timestep_spacing: str = "linspace",
|
||||
steps_offset: int = 0,
|
||||
):
|
||||
if sum([self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
raise ValueError("Only one of `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used.")
|
||||
if trained_betas is not None:
|
||||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||||
elif beta_schedule == "linear":
|
||||
@@ -249,6 +254,9 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
if self.config.use_karras_sigmas:
|
||||
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
||||
elif self.config.use_exponential_sigmas:
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||||
|
||||
self.log_sigmas = torch.from_numpy(log_sigmas).to(device=device)
|
||||
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
|
||||
@@ -359,6 +367,28 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
||||
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""Constructs an exponential noise schedule."""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
|
||||
return sigmas
|
||||
|
||||
def step(
|
||||
self,
|
||||
model_output: Union[torch.Tensor, np.ndarray],
|
||||
|
||||
@@ -111,6 +111,8 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
||||
the sigmas are determined according to a sequence of noise levels {σi}.
|
||||
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
||||
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
||||
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
||||
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
||||
@@ -134,10 +136,13 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
beta_schedule: str = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
use_exponential_sigmas: Optional[bool] = False,
|
||||
prediction_type: str = "epsilon",
|
||||
timestep_spacing: str = "linspace",
|
||||
steps_offset: int = 0,
|
||||
):
|
||||
if sum([self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
raise ValueError("Only one of `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used.")
|
||||
if trained_betas is not None:
|
||||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||||
elif beta_schedule == "linear":
|
||||
@@ -289,6 +294,9 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
if self.config.use_karras_sigmas:
|
||||
sigmas = self._convert_to_karras(in_sigmas=sigmas)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||||
elif self.config.use_exponential_sigmas:
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||||
|
||||
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
|
||||
|
||||
@@ -362,6 +370,28 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
||||
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""Constructs an exponential noise schedule."""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
|
||||
return sigmas
|
||||
|
||||
def step(
|
||||
self,
|
||||
model_output: torch.Tensor,
|
||||
|
||||
@@ -122,6 +122,8 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
||||
the sigmas are determined according to a sequence of noise levels {σi}.
|
||||
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
||||
lambda_min_clipped (`float`, defaults to `-inf`):
|
||||
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
|
||||
cosine (`squaredcos_cap_v2`) noise schedule.
|
||||
@@ -156,11 +158,14 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
||||
algorithm_type: str = "data_prediction",
|
||||
lower_order_final: bool = True,
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
use_exponential_sigmas: Optional[bool] = False,
|
||||
lambda_min_clipped: float = -float("inf"),
|
||||
variance_type: Optional[str] = None,
|
||||
timestep_spacing: str = "linspace",
|
||||
steps_offset: int = 0,
|
||||
):
|
||||
if sum([self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
raise ValueError("Only one of `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used.")
|
||||
if trained_betas is not None:
|
||||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||||
elif beta_schedule == "linear":
|
||||
@@ -284,6 +289,9 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
||||
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
||||
elif self.config.use_exponential_sigmas:
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||||
else:
|
||||
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
||||
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
|
||||
@@ -395,6 +403,28 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
||||
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""Constructs an exponential noise schedule."""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
|
||||
return sigmas
|
||||
|
||||
def convert_model_output(
|
||||
self,
|
||||
model_output: torch.Tensor,
|
||||
|
||||
@@ -159,6 +159,8 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
||||
the sigmas are determined according to a sequence of noise levels {σi}.
|
||||
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
||||
timestep_spacing (`str`, defaults to `"linspace"`):
|
||||
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
||||
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
||||
@@ -195,11 +197,14 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
disable_corrector: List[int] = [],
|
||||
solver_p: SchedulerMixin = None,
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
use_exponential_sigmas: Optional[bool] = False,
|
||||
timestep_spacing: str = "linspace",
|
||||
steps_offset: int = 0,
|
||||
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
||||
rescale_betas_zero_snr: bool = False,
|
||||
):
|
||||
if sum([self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
raise ValueError("Only one of `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used.")
|
||||
if trained_betas is not None:
|
||||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||||
elif beta_schedule == "linear":
|
||||
@@ -329,6 +334,9 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
||||
)
|
||||
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
||||
elif self.config.use_exponential_sigmas:
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
||||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||||
else:
|
||||
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
||||
if self.config.final_sigmas_type == "sigma_min":
|
||||
@@ -450,6 +458,28 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
||||
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""Constructs an exponential noise schedule."""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
|
||||
return sigmas
|
||||
|
||||
def convert_model_output(
|
||||
self,
|
||||
model_output: torch.Tensor,
|
||||
|
||||
Reference in New Issue
Block a user