mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Add Wan2.2 VACE - Fun (#12324)
* support Wan2.2-VACE-Fun-A14B * support Wan2.2-VACE-Fun-A14B * support Wan2.2-VACE-Fun-A14B * Apply style fixes * test --------- Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
@@ -278,6 +278,29 @@ def get_transformer_config(model_type: str) -> Tuple[Dict[str, Any], ...]:
|
||||
}
|
||||
RENAME_DICT = VACE_TRANSFORMER_KEYS_RENAME_DICT
|
||||
SPECIAL_KEYS_REMAP = VACE_TRANSFORMER_SPECIAL_KEYS_REMAP
|
||||
elif model_type == "Wan2.2-VACE-Fun-14B":
|
||||
config = {
|
||||
"model_id": "alibaba-pai/Wan2.2-VACE-Fun-A14B",
|
||||
"diffusers_config": {
|
||||
"added_kv_proj_dim": None,
|
||||
"attention_head_dim": 128,
|
||||
"cross_attn_norm": True,
|
||||
"eps": 1e-06,
|
||||
"ffn_dim": 13824,
|
||||
"freq_dim": 256,
|
||||
"in_channels": 16,
|
||||
"num_attention_heads": 40,
|
||||
"num_layers": 40,
|
||||
"out_channels": 16,
|
||||
"patch_size": [1, 2, 2],
|
||||
"qk_norm": "rms_norm_across_heads",
|
||||
"text_dim": 4096,
|
||||
"vace_layers": [0, 5, 10, 15, 20, 25, 30, 35],
|
||||
"vace_in_channels": 96,
|
||||
},
|
||||
}
|
||||
RENAME_DICT = VACE_TRANSFORMER_KEYS_RENAME_DICT
|
||||
SPECIAL_KEYS_REMAP = VACE_TRANSFORMER_SPECIAL_KEYS_REMAP
|
||||
elif model_type == "Wan2.2-I2V-14B-720p":
|
||||
config = {
|
||||
"model_id": "Wan-AI/Wan2.2-I2V-A14B",
|
||||
@@ -975,7 +998,17 @@ if __name__ == "__main__":
|
||||
image_encoder=image_encoder,
|
||||
image_processor=image_processor,
|
||||
)
|
||||
elif "VACE" in args.model_type:
|
||||
elif "Wan2.2-VACE" in args.model_type:
|
||||
pipe = WanVACEPipeline(
|
||||
transformer=transformer,
|
||||
transformer_2=transformer_2,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
vae=vae,
|
||||
scheduler=scheduler,
|
||||
boundary_ratio=0.875,
|
||||
)
|
||||
elif "Wan-VACE" in args.model_type:
|
||||
pipe = WanVACEPipeline(
|
||||
transformer=transformer,
|
||||
text_encoder=text_encoder,
|
||||
|
||||
@@ -152,16 +152,26 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
text_encoder ([`T5EncoderModel`]):
|
||||
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
||||
the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
|
||||
transformer ([`WanTransformer3DModel`]):
|
||||
transformer ([`WanVACETransformer3DModel`]):
|
||||
Conditional Transformer to denoise the input latents.
|
||||
transformer_2 ([`WanVACETransformer3DModel`], *optional*):
|
||||
Conditional Transformer to denoise the input latents during the low-noise stage. In two-stage denoising,
|
||||
`transformer` handles high-noise stages and `transformer_2` handles low-noise stages. If not provided, only
|
||||
`transformer` is used.
|
||||
scheduler ([`UniPCMultistepScheduler`]):
|
||||
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
||||
vae ([`AutoencoderKLWan`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
||||
boundary_ratio (`float`, *optional*, defaults to `None`):
|
||||
Ratio of total timesteps to use as the boundary for switching between transformers in two-stage denoising.
|
||||
The actual boundary timestep is calculated as `boundary_ratio * num_train_timesteps`. When provided,
|
||||
`transformer` handles timesteps >= boundary_timestep and `transformer_2` handles timesteps <
|
||||
boundary_timestep. If `None`, only `transformer` is used for the entire denoising process.
|
||||
"""
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
||||
_optional_components = ["transformer_2"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -170,6 +180,8 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
transformer: WanVACETransformer3DModel,
|
||||
vae: AutoencoderKLWan,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
transformer_2: WanVACETransformer3DModel = None,
|
||||
boundary_ratio: Optional[float] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -178,9 +190,10 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
transformer=transformer,
|
||||
transformer_2=transformer_2,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
self.register_to_config(boundary_ratio=boundary_ratio)
|
||||
self.vae_scale_factor_temporal = 2 ** sum(self.vae.temperal_downsample) if getattr(self, "vae", None) else 4
|
||||
self.vae_scale_factor_spatial = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
|
||||
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
||||
@@ -321,6 +334,7 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
video=None,
|
||||
mask=None,
|
||||
reference_images=None,
|
||||
guidance_scale_2=None,
|
||||
):
|
||||
base = self.vae_scale_factor_spatial * self.transformer.config.patch_size[1]
|
||||
if height % base != 0 or width % base != 0:
|
||||
@@ -332,6 +346,8 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
if self.config.boundary_ratio is None and guidance_scale_2 is not None:
|
||||
raise ValueError("`guidance_scale_2` is only supported when the pipeline's `boundary_ratio` is not None.")
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
@@ -667,6 +683,7 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
num_frames: int = 81,
|
||||
num_inference_steps: int = 50,
|
||||
guidance_scale: float = 5.0,
|
||||
guidance_scale_2: Optional[float] = None,
|
||||
num_videos_per_prompt: Optional[int] = 1,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.Tensor] = None,
|
||||
@@ -728,6 +745,10 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
guidance_scale_2 (`float`, *optional*, defaults to `None`):
|
||||
Guidance scale for the low-noise stage transformer (`transformer_2`). If `None` and the pipeline's
|
||||
`boundary_ratio` is not None, uses the same value as `guidance_scale`. Only used when `transformer_2`
|
||||
and the pipeline's `boundary_ratio` are not None.
|
||||
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
@@ -793,6 +814,7 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
video,
|
||||
mask,
|
||||
reference_images,
|
||||
guidance_scale_2,
|
||||
)
|
||||
|
||||
if num_frames % self.vae_scale_factor_temporal != 1:
|
||||
@@ -802,7 +824,11 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
num_frames = num_frames // self.vae_scale_factor_temporal * self.vae_scale_factor_temporal + 1
|
||||
num_frames = max(num_frames, 1)
|
||||
|
||||
if self.config.boundary_ratio is not None and guidance_scale_2 is None:
|
||||
guidance_scale_2 = guidance_scale
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._guidance_scale_2 = guidance_scale_2
|
||||
self._attention_kwargs = attention_kwargs
|
||||
self._current_timestep = None
|
||||
self._interrupt = False
|
||||
@@ -896,36 +922,53 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
if self.config.boundary_ratio is not None:
|
||||
boundary_timestep = self.config.boundary_ratio * self.scheduler.config.num_train_timesteps
|
||||
else:
|
||||
boundary_timestep = None
|
||||
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
self._current_timestep = t
|
||||
|
||||
if boundary_timestep is None or t >= boundary_timestep:
|
||||
# wan2.1 or high-noise stage in wan2.2
|
||||
current_model = self.transformer
|
||||
current_guidance_scale = guidance_scale
|
||||
else:
|
||||
# low-noise stage in wan2.2
|
||||
current_model = self.transformer_2
|
||||
current_guidance_scale = guidance_scale_2
|
||||
|
||||
latent_model_input = latents.to(transformer_dtype)
|
||||
timestep = t.expand(latents.shape[0])
|
||||
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
timestep=timestep,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
control_hidden_states=conditioning_latents,
|
||||
control_hidden_states_scale=conditioning_scale,
|
||||
attention_kwargs=attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
if self.do_classifier_free_guidance:
|
||||
noise_uncond = self.transformer(
|
||||
with current_model.cache_context("cond"):
|
||||
noise_pred = current_model(
|
||||
hidden_states=latent_model_input,
|
||||
timestep=timestep,
|
||||
encoder_hidden_states=negative_prompt_embeds,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
control_hidden_states=conditioning_latents,
|
||||
control_hidden_states_scale=conditioning_scale,
|
||||
attention_kwargs=attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
|
||||
|
||||
if self.do_classifier_free_guidance:
|
||||
with current_model.cache_context("uncond"):
|
||||
noise_uncond = current_model(
|
||||
hidden_states=latent_model_input,
|
||||
timestep=timestep,
|
||||
encoder_hidden_states=negative_prompt_embeds,
|
||||
control_hidden_states=conditioning_latents,
|
||||
control_hidden_states_scale=conditioning_scale,
|
||||
attention_kwargs=attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||
|
||||
@@ -87,6 +87,7 @@ class WanVACEPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"transformer_2": None,
|
||||
}
|
||||
return components
|
||||
|
||||
|
||||
Reference in New Issue
Block a user