mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
@@ -42,7 +42,7 @@ if is_torch_available():
|
||||
_import_structure["unet_2d"] = ["UNet2DModel"]
|
||||
_import_structure["unet_2d_condition"] = ["UNet2DConditionModel"]
|
||||
_import_structure["unet_3d_condition"] = ["UNet3DConditionModel"]
|
||||
_import_structure["unet_kandi3"] = ["Kandinsky3UNet"]
|
||||
_import_structure["unet_kandinsky3"] = ["Kandinsky3UNet"]
|
||||
_import_structure["unet_motion_model"] = ["MotionAdapter", "UNetMotionModel"]
|
||||
_import_structure["unet_spatio_temporal_condition"] = ["UNetSpatioTemporalConditionModel"]
|
||||
_import_structure["vq_model"] = ["VQModel"]
|
||||
@@ -72,7 +72,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .unet_2d import UNet2DModel
|
||||
from .unet_2d_condition import UNet2DConditionModel
|
||||
from .unet_3d_condition import UNet3DConditionModel
|
||||
from .unet_kandi3 import Kandinsky3UNet
|
||||
from .unet_kandinsky3 import Kandinsky3UNet
|
||||
from .unet_motion_model import MotionAdapter, UNetMotionModel
|
||||
from .unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
|
||||
from .vq_model import VQModel
|
||||
|
||||
@@ -16,7 +16,7 @@ from typing import Callable, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import einsum, nn
|
||||
from torch import nn
|
||||
|
||||
from ..utils import USE_PEFT_BACKEND, deprecate, logging
|
||||
from ..utils.import_utils import is_xformers_available
|
||||
@@ -109,15 +109,17 @@ class Attention(nn.Module):
|
||||
residual_connection: bool = False,
|
||||
_from_deprecated_attn_block: bool = False,
|
||||
processor: Optional["AttnProcessor"] = None,
|
||||
out_dim: int = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.inner_dim = dim_head * heads
|
||||
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
||||
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
||||
self.upcast_attention = upcast_attention
|
||||
self.upcast_softmax = upcast_softmax
|
||||
self.rescale_output_factor = rescale_output_factor
|
||||
self.residual_connection = residual_connection
|
||||
self.dropout = dropout
|
||||
self.out_dim = out_dim if out_dim is not None else query_dim
|
||||
|
||||
# we make use of this private variable to know whether this class is loaded
|
||||
# with an deprecated state dict so that we can convert it on the fly
|
||||
@@ -126,7 +128,7 @@ class Attention(nn.Module):
|
||||
self.scale_qk = scale_qk
|
||||
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
||||
|
||||
self.heads = heads
|
||||
self.heads = out_dim // dim_head if out_dim is not None else heads
|
||||
# for slice_size > 0 the attention score computation
|
||||
# is split across the batch axis to save memory
|
||||
# You can set slice_size with `set_attention_slice`
|
||||
@@ -193,7 +195,7 @@ class Attention(nn.Module):
|
||||
self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
|
||||
|
||||
self.to_out = nn.ModuleList([])
|
||||
self.to_out.append(linear_cls(self.inner_dim, query_dim, bias=out_bias))
|
||||
self.to_out.append(linear_cls(self.inner_dim, self.out_dim, bias=out_bias))
|
||||
self.to_out.append(nn.Dropout(dropout))
|
||||
|
||||
# set attention processor
|
||||
@@ -2219,44 +2221,6 @@ class IPAdapterAttnProcessor2_0(torch.nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
# TODO(Yiyi): This class should not exist, we can replace it with a normal attention processor I believe
|
||||
# this way torch.compile and co. will work as well
|
||||
class Kandi3AttnProcessor:
|
||||
r"""
|
||||
Default kandinsky3 proccesor for performing attention-related computations.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def _reshape(hid_states, h):
|
||||
b, n, f = hid_states.shape
|
||||
d = f // h
|
||||
return hid_states.unsqueeze(-1).reshape(b, n, h, d).permute(0, 2, 1, 3)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn,
|
||||
x,
|
||||
context,
|
||||
context_mask=None,
|
||||
):
|
||||
query = self._reshape(attn.to_q(x), h=attn.num_heads)
|
||||
key = self._reshape(attn.to_k(context), h=attn.num_heads)
|
||||
value = self._reshape(attn.to_v(context), h=attn.num_heads)
|
||||
|
||||
attention_matrix = einsum("b h i d, b h j d -> b h i j", query, key)
|
||||
|
||||
if context_mask is not None:
|
||||
max_neg_value = -torch.finfo(attention_matrix.dtype).max
|
||||
context_mask = context_mask.unsqueeze(1).unsqueeze(1)
|
||||
attention_matrix = attention_matrix.masked_fill(~(context_mask != 0), max_neg_value)
|
||||
attention_matrix = (attention_matrix * attn.scale).softmax(dim=-1)
|
||||
|
||||
out = einsum("b h i j, b h j d -> b h i d", attention_matrix, value)
|
||||
out = out.permute(0, 2, 1, 3).reshape(out.shape[0], out.shape[2], -1)
|
||||
out = attn.to_out[0](out)
|
||||
return out
|
||||
|
||||
|
||||
LORA_ATTENTION_PROCESSORS = (
|
||||
LoRAAttnProcessor,
|
||||
LoRAAttnProcessor2_0,
|
||||
@@ -2282,7 +2246,6 @@ CROSS_ATTENTION_PROCESSORS = (
|
||||
LoRAXFormersAttnProcessor,
|
||||
IPAdapterAttnProcessor,
|
||||
IPAdapterAttnProcessor2_0,
|
||||
Kandi3AttnProcessor,
|
||||
)
|
||||
|
||||
AttentionProcessor = Union[
|
||||
|
||||
@@ -1,16 +1,28 @@
|
||||
import math
|
||||
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from ..utils import BaseOutput, logging
|
||||
from .attention_processor import AttentionProcessor, Kandi3AttnProcessor
|
||||
from .embeddings import TimestepEmbedding
|
||||
from .attention_processor import Attention, AttentionProcessor, AttnProcessor
|
||||
from .embeddings import TimestepEmbedding, Timesteps
|
||||
from .modeling_utils import ModelMixin
|
||||
|
||||
|
||||
@@ -22,36 +34,6 @@ class Kandinsky3UNetOutput(BaseOutput):
|
||||
sample: torch.FloatTensor = None
|
||||
|
||||
|
||||
# TODO(Yiyi): This class needs to be removed
|
||||
def set_default_item(condition, item_1, item_2=None):
|
||||
if condition:
|
||||
return item_1
|
||||
else:
|
||||
return item_2
|
||||
|
||||
|
||||
# TODO(Yiyi): This class needs to be removed
|
||||
def set_default_layer(condition, layer_1, args_1=[], kwargs_1={}, layer_2=torch.nn.Identity, args_2=[], kwargs_2={}):
|
||||
if condition:
|
||||
return layer_1(*args_1, **kwargs_1)
|
||||
else:
|
||||
return layer_2(*args_2, **kwargs_2)
|
||||
|
||||
|
||||
# TODO(Yiyi): This class should be removed and be replaced by Timesteps
|
||||
class SinusoidalPosEmb(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
def forward(self, x, type_tensor=None):
|
||||
half_dim = self.dim // 2
|
||||
emb = math.log(10000) / (half_dim - 1)
|
||||
emb = torch.exp(torch.arange(half_dim, device=x.device) * -emb)
|
||||
emb = x[:, None] * emb[None, :]
|
||||
return torch.cat((emb.sin(), emb.cos()), dim=-1)
|
||||
|
||||
|
||||
class Kandinsky3EncoderProj(nn.Module):
|
||||
def __init__(self, encoder_hid_dim, cross_attention_dim):
|
||||
super().__init__()
|
||||
@@ -87,9 +69,7 @@ class Kandinsky3UNet(ModelMixin, ConfigMixin):
|
||||
|
||||
out_channels = in_channels
|
||||
init_channels = block_out_channels[0] // 2
|
||||
# TODO(Yiyi): Should be replaced with Timesteps class -> make sure that results are the same
|
||||
# self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1)
|
||||
self.time_proj = SinusoidalPosEmb(init_channels)
|
||||
self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1)
|
||||
|
||||
self.time_embedding = TimestepEmbedding(
|
||||
init_channels,
|
||||
@@ -106,7 +86,7 @@ class Kandinsky3UNet(ModelMixin, ConfigMixin):
|
||||
|
||||
hidden_dims = [init_channels] + list(block_out_channels)
|
||||
in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:]))
|
||||
text_dims = [set_default_item(is_exist, cross_attention_dim) for is_exist in add_cross_attention]
|
||||
text_dims = [cross_attention_dim if is_exist else None for is_exist in add_cross_attention]
|
||||
num_blocks = len(block_out_channels) * [layers_per_block]
|
||||
layer_params = [num_blocks, text_dims, add_self_attention]
|
||||
rev_layer_params = map(reversed, layer_params)
|
||||
@@ -118,7 +98,7 @@ class Kandinsky3UNet(ModelMixin, ConfigMixin):
|
||||
zip(in_out_dims, *layer_params)
|
||||
):
|
||||
down_sample = level != (self.num_levels - 1)
|
||||
cat_dims.append(set_default_item(level != (self.num_levels - 1), out_dim, 0))
|
||||
cat_dims.append(out_dim if level != (self.num_levels - 1) else 0)
|
||||
self.down_blocks.append(
|
||||
Kandinsky3DownSampleBlock(
|
||||
in_dim,
|
||||
@@ -223,18 +203,16 @@ class Kandinsky3UNet(ModelMixin, ConfigMixin):
|
||||
"""
|
||||
Disables custom attention processors and sets the default attention implementation.
|
||||
"""
|
||||
self.set_attn_processor(Kandi3AttnProcessor())
|
||||
self.set_attn_processor(AttnProcessor())
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if hasattr(module, "gradient_checkpointing"):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
def forward(self, sample, timestep, encoder_hidden_states=None, encoder_attention_mask=None, return_dict=True):
|
||||
# TODO(Yiyi): Clean up the following variables - these names should not be used
|
||||
# but instead only the ones that we pass to forward
|
||||
x = sample
|
||||
context_mask = encoder_attention_mask
|
||||
context = encoder_hidden_states
|
||||
if encoder_attention_mask is not None:
|
||||
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
||||
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
||||
|
||||
if not torch.is_tensor(timestep):
|
||||
dtype = torch.float32 if isinstance(timestep, float) else torch.int32
|
||||
@@ -244,33 +222,33 @@ class Kandinsky3UNet(ModelMixin, ConfigMixin):
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = timestep.expand(sample.shape[0])
|
||||
time_embed_input = self.time_proj(timestep).to(x.dtype)
|
||||
time_embed_input = self.time_proj(timestep).to(sample.dtype)
|
||||
time_embed = self.time_embedding(time_embed_input)
|
||||
|
||||
context = self.encoder_hid_proj(context)
|
||||
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
||||
|
||||
if context is not None:
|
||||
time_embed = self.add_time_condition(time_embed, context, context_mask)
|
||||
if encoder_hidden_states is not None:
|
||||
time_embed = self.add_time_condition(time_embed, encoder_hidden_states, encoder_attention_mask)
|
||||
|
||||
hidden_states = []
|
||||
x = self.conv_in(x)
|
||||
sample = self.conv_in(sample)
|
||||
for level, down_sample in enumerate(self.down_blocks):
|
||||
x = down_sample(x, time_embed, context, context_mask)
|
||||
sample = down_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
|
||||
if level != self.num_levels - 1:
|
||||
hidden_states.append(x)
|
||||
hidden_states.append(sample)
|
||||
|
||||
for level, up_sample in enumerate(self.up_blocks):
|
||||
if level != 0:
|
||||
x = torch.cat([x, hidden_states.pop()], dim=1)
|
||||
x = up_sample(x, time_embed, context, context_mask)
|
||||
sample = torch.cat([sample, hidden_states.pop()], dim=1)
|
||||
sample = up_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
|
||||
|
||||
x = self.conv_norm_out(x)
|
||||
x = self.conv_act_out(x)
|
||||
x = self.conv_out(x)
|
||||
sample = self.conv_norm_out(sample)
|
||||
sample = self.conv_act_out(sample)
|
||||
sample = self.conv_out(sample)
|
||||
|
||||
if not return_dict:
|
||||
return (x,)
|
||||
return Kandinsky3UNetOutput(sample=x)
|
||||
return (sample,)
|
||||
return Kandinsky3UNetOutput(sample=sample)
|
||||
|
||||
|
||||
class Kandinsky3UpSampleBlock(nn.Module):
|
||||
@@ -290,7 +268,7 @@ class Kandinsky3UpSampleBlock(nn.Module):
|
||||
self_attention=True,
|
||||
):
|
||||
super().__init__()
|
||||
up_resolutions = [[None, set_default_item(up_sample, True), None, None]] + [[None] * 4] * (num_blocks - 1)
|
||||
up_resolutions = [[None, True if up_sample else None, None, None]] + [[None] * 4] * (num_blocks - 1)
|
||||
hidden_channels = (
|
||||
[(in_channels + cat_dim, in_channels)]
|
||||
+ [(in_channels, in_channels)] * (num_blocks - 2)
|
||||
@@ -303,27 +281,27 @@ class Kandinsky3UpSampleBlock(nn.Module):
|
||||
self.self_attention = self_attention
|
||||
self.context_dim = context_dim
|
||||
|
||||
attentions.append(
|
||||
set_default_layer(
|
||||
self_attention,
|
||||
Kandinsky3AttentionBlock,
|
||||
(out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio),
|
||||
layer_2=nn.Identity,
|
||||
if self_attention:
|
||||
attentions.append(
|
||||
Kandinsky3AttentionBlock(out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
|
||||
)
|
||||
)
|
||||
else:
|
||||
attentions.append(nn.Identity())
|
||||
|
||||
for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
|
||||
resnets_in.append(
|
||||
Kandinsky3ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution)
|
||||
)
|
||||
attentions.append(
|
||||
set_default_layer(
|
||||
context_dim is not None,
|
||||
Kandinsky3AttentionBlock,
|
||||
(in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio),
|
||||
layer_2=nn.Identity,
|
||||
|
||||
if context_dim is not None:
|
||||
attentions.append(
|
||||
Kandinsky3AttentionBlock(
|
||||
in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
|
||||
)
|
||||
)
|
||||
)
|
||||
else:
|
||||
attentions.append(nn.Identity())
|
||||
|
||||
resnets_out.append(
|
||||
Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
|
||||
)
|
||||
@@ -367,29 +345,29 @@ class Kandinsky3DownSampleBlock(nn.Module):
|
||||
self.self_attention = self_attention
|
||||
self.context_dim = context_dim
|
||||
|
||||
attentions.append(
|
||||
set_default_layer(
|
||||
self_attention,
|
||||
Kandinsky3AttentionBlock,
|
||||
(in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio),
|
||||
layer_2=nn.Identity,
|
||||
if self_attention:
|
||||
attentions.append(
|
||||
Kandinsky3AttentionBlock(in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
|
||||
)
|
||||
)
|
||||
else:
|
||||
attentions.append(nn.Identity())
|
||||
|
||||
up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, set_default_item(down_sample, False), None]]
|
||||
up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, False if down_sample else None, None]]
|
||||
hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1)
|
||||
for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
|
||||
resnets_in.append(
|
||||
Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
|
||||
)
|
||||
attentions.append(
|
||||
set_default_layer(
|
||||
context_dim is not None,
|
||||
Kandinsky3AttentionBlock,
|
||||
(out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio),
|
||||
layer_2=nn.Identity,
|
||||
|
||||
if context_dim is not None:
|
||||
attentions.append(
|
||||
Kandinsky3AttentionBlock(
|
||||
out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
|
||||
)
|
||||
)
|
||||
)
|
||||
else:
|
||||
attentions.append(nn.Identity())
|
||||
|
||||
resnets_out.append(
|
||||
Kandinsky3ResNetBlock(
|
||||
out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution
|
||||
@@ -431,68 +409,23 @@ class Kandinsky3ConditionalGroupNorm(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
# TODO(Yiyi): This class should ideally not even exist, it slows everything needlessly down. I'm pretty
|
||||
# sure we can delete it and instead just pass an attention_mask
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, context_dim, head_dim=64):
|
||||
super().__init__()
|
||||
assert out_channels % head_dim == 0
|
||||
self.num_heads = out_channels // head_dim
|
||||
self.scale = head_dim**-0.5
|
||||
|
||||
# to_q
|
||||
self.to_q = nn.Linear(in_channels, out_channels, bias=False)
|
||||
# to_k
|
||||
self.to_k = nn.Linear(context_dim, out_channels, bias=False)
|
||||
# to_v
|
||||
self.to_v = nn.Linear(context_dim, out_channels, bias=False)
|
||||
processor = Kandi3AttnProcessor()
|
||||
self.set_processor(processor)
|
||||
# to_out
|
||||
self.to_out = nn.ModuleList([])
|
||||
self.to_out.append(nn.Linear(out_channels, out_channels, bias=False))
|
||||
|
||||
def set_processor(self, processor: "AttnProcessor"): # noqa: F821
|
||||
# if current processor is in `self._modules` and if passed `processor` is not, we need to
|
||||
# pop `processor` from `self._modules`
|
||||
if (
|
||||
hasattr(self, "processor")
|
||||
and isinstance(self.processor, torch.nn.Module)
|
||||
and not isinstance(processor, torch.nn.Module)
|
||||
):
|
||||
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
|
||||
self._modules.pop("processor")
|
||||
|
||||
self.processor = processor
|
||||
|
||||
def forward(self, x, context, context_mask=None, image_mask=None):
|
||||
return self.processor(
|
||||
self,
|
||||
x,
|
||||
context=context,
|
||||
context_mask=context_mask,
|
||||
)
|
||||
|
||||
|
||||
class Kandinsky3Block(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None):
|
||||
super().__init__()
|
||||
self.group_norm = Kandinsky3ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim)
|
||||
self.activation = nn.SiLU()
|
||||
self.up_sample = set_default_layer(
|
||||
up_resolution is not None and up_resolution,
|
||||
nn.ConvTranspose2d,
|
||||
(in_channels, in_channels),
|
||||
{"kernel_size": 2, "stride": 2},
|
||||
)
|
||||
if up_resolution is not None and up_resolution:
|
||||
self.up_sample = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
|
||||
else:
|
||||
self.up_sample = nn.Identity()
|
||||
|
||||
padding = int(kernel_size > 1)
|
||||
self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding)
|
||||
self.down_sample = set_default_layer(
|
||||
up_resolution is not None and not up_resolution,
|
||||
nn.Conv2d,
|
||||
(out_channels, out_channels),
|
||||
{"kernel_size": 2, "stride": 2},
|
||||
)
|
||||
|
||||
if up_resolution is not None and not up_resolution:
|
||||
self.down_sample = nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
|
||||
else:
|
||||
self.down_sample = nn.Identity()
|
||||
|
||||
def forward(self, x, time_embed):
|
||||
x = self.group_norm(x, time_embed)
|
||||
@@ -521,14 +454,18 @@ class Kandinsky3ResNetBlock(nn.Module):
|
||||
)
|
||||
]
|
||||
)
|
||||
self.shortcut_up_sample = set_default_layer(
|
||||
True in up_resolutions, nn.ConvTranspose2d, (in_channels, in_channels), {"kernel_size": 2, "stride": 2}
|
||||
self.shortcut_up_sample = (
|
||||
nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
|
||||
if True in up_resolutions
|
||||
else nn.Identity()
|
||||
)
|
||||
self.shortcut_projection = set_default_layer(
|
||||
in_channels != out_channels, nn.Conv2d, (in_channels, out_channels), {"kernel_size": 1}
|
||||
self.shortcut_projection = (
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else nn.Identity()
|
||||
)
|
||||
self.shortcut_down_sample = set_default_layer(
|
||||
False in up_resolutions, nn.Conv2d, (out_channels, out_channels), {"kernel_size": 2, "stride": 2}
|
||||
self.shortcut_down_sample = (
|
||||
nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
|
||||
if False in up_resolutions
|
||||
else nn.Identity()
|
||||
)
|
||||
|
||||
def forward(self, x, time_embed):
|
||||
@@ -546,9 +483,16 @@ class Kandinsky3ResNetBlock(nn.Module):
|
||||
class Kandinsky3AttentionPooling(nn.Module):
|
||||
def __init__(self, num_channels, context_dim, head_dim=64):
|
||||
super().__init__()
|
||||
self.attention = Attention(context_dim, num_channels, context_dim, head_dim)
|
||||
self.attention = Attention(
|
||||
context_dim,
|
||||
context_dim,
|
||||
dim_head=head_dim,
|
||||
out_dim=num_channels,
|
||||
out_bias=False,
|
||||
)
|
||||
|
||||
def forward(self, x, context, context_mask=None):
|
||||
context_mask = context_mask.to(dtype=context.dtype)
|
||||
context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask)
|
||||
return x + context.squeeze(1)
|
||||
|
||||
@@ -557,7 +501,13 @@ class Kandinsky3AttentionBlock(nn.Module):
|
||||
def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4):
|
||||
super().__init__()
|
||||
self.in_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
|
||||
self.attention = Attention(num_channels, num_channels, context_dim or num_channels, head_dim)
|
||||
self.attention = Attention(
|
||||
num_channels,
|
||||
context_dim or num_channels,
|
||||
dim_head=head_dim,
|
||||
out_dim=num_channels,
|
||||
out_bias=False,
|
||||
)
|
||||
|
||||
hidden_channels = expansion_ratio * num_channels
|
||||
self.out_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
|
||||
@@ -572,14 +522,10 @@ class Kandinsky3AttentionBlock(nn.Module):
|
||||
out = self.in_norm(x, time_embed)
|
||||
out = out.reshape(x.shape[0], -1, height * width).permute(0, 2, 1)
|
||||
context = context if context is not None else out
|
||||
if context_mask is not None:
|
||||
context_mask = context_mask.to(dtype=context.dtype)
|
||||
|
||||
if image_mask is not None:
|
||||
mask_height, mask_width = image_mask.shape[-2:]
|
||||
kernel_size = (mask_height // height, mask_width // width)
|
||||
image_mask = F.max_pool2d(image_mask, kernel_size, kernel_size)
|
||||
image_mask = image_mask.reshape(image_mask.shape[0], -1)
|
||||
|
||||
out = self.attention(out, context, context_mask, image_mask)
|
||||
out = self.attention(out, context, context_mask)
|
||||
out = out.permute(0, 2, 1).unsqueeze(-1).reshape(out.shape[0], -1, height, width)
|
||||
x = x + out
|
||||
|
||||
@@ -21,8 +21,8 @@ except OptionalDependencyNotAvailable:
|
||||
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["kandinsky3_pipeline"] = ["Kandinsky3Pipeline"]
|
||||
_import_structure["kandinsky3img2img_pipeline"] = ["Kandinsky3Img2ImgPipeline"]
|
||||
_import_structure["pipeline_kandinsky3"] = ["Kandinsky3Pipeline"]
|
||||
_import_structure["pipeline_kandinsky3_img2img"] = ["Kandinsky3Img2ImgPipeline"]
|
||||
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
@@ -33,8 +33,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_objects import *
|
||||
else:
|
||||
from .kandinsky3_pipeline import Kandinsky3Pipeline
|
||||
from .kandinsky3img2img_pipeline import Kandinsky3Img2ImgPipeline
|
||||
from .pipeline_kandinsky3 import Kandinsky3Pipeline
|
||||
from .pipeline_kandinsky3_img2img import Kandinsky3Img2ImgPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Callable, List, Optional, Union
|
||||
from typing import Callable, Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
from transformers import T5EncoderModel, T5Tokenizer
|
||||
@@ -7,8 +7,10 @@ from ...loaders import LoraLoaderMixin
|
||||
from ...models import Kandinsky3UNet, VQModel
|
||||
from ...schedulers import DDPMScheduler
|
||||
from ...utils import (
|
||||
deprecate,
|
||||
is_accelerate_available,
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
||||
@@ -16,6 +18,23 @@ from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> from diffusers import AutoPipelineForText2Image
|
||||
>>> import torch
|
||||
|
||||
>>> pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16)
|
||||
>>> pipe.enable_model_cpu_offload()
|
||||
|
||||
>>> prompt = "A photograph of the inside of a subway train. There are raccoons sitting on the seats. One of them is reading a newspaper. The window shows the city in the background."
|
||||
|
||||
>>> generator = torch.Generator(device="cpu").manual_seed(0)
|
||||
>>> image = pipe(prompt, num_inference_steps=25, generator=generator).images[0]
|
||||
```
|
||||
|
||||
"""
|
||||
|
||||
|
||||
def downscale_height_and_width(height, width, scale_factor=8):
|
||||
new_height = height // scale_factor**2
|
||||
@@ -29,6 +48,13 @@ def downscale_height_and_width(height, width, scale_factor=8):
|
||||
|
||||
class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
model_cpu_offload_seq = "text_encoder->unet->movq"
|
||||
_callback_tensor_inputs = [
|
||||
"latents",
|
||||
"prompt_embeds",
|
||||
"negative_prompt_embeds",
|
||||
"negative_attention_mask",
|
||||
"attention_mask",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -50,7 +76,7 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
else:
|
||||
raise ImportError("Please install accelerate via `pip install accelerate`")
|
||||
|
||||
for model in [self.text_encoder, self.unet]:
|
||||
for model in [self.text_encoder, self.unet, self.movq]:
|
||||
if model is not None:
|
||||
remove_hook_from_module(model, recurse=True)
|
||||
|
||||
@@ -77,6 +103,8 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
_cut_context=False,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
negative_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
@@ -101,6 +129,10 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
attention_mask (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated attention mask. Must provide if passing `prompt_embeds` directly.
|
||||
negative_attention_mask (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly.
|
||||
"""
|
||||
if prompt is not None and negative_prompt is not None:
|
||||
if type(prompt) is not type(negative_prompt):
|
||||
@@ -228,14 +260,21 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
negative_prompt=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
attention_mask=None,
|
||||
negative_attention_mask=None,
|
||||
):
|
||||
if (callback_steps is None) or (
|
||||
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
||||
):
|
||||
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
||||
raise ValueError(
|
||||
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||||
f" {type(callback_steps)}."
|
||||
)
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
@@ -262,8 +301,42 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
if negative_prompt_embeds is not None and negative_attention_mask is None:
|
||||
raise ValueError("Please provide `negative_attention_mask` along with `negative_prompt_embeds`")
|
||||
|
||||
if negative_prompt_embeds is not None and negative_attention_mask is not None:
|
||||
if negative_prompt_embeds.shape[:2] != negative_attention_mask.shape:
|
||||
raise ValueError(
|
||||
"`negative_prompt_embeds` and `negative_attention_mask` must have the same batch_size and token length when passed directly, but"
|
||||
f" got: `negative_prompt_embeds` {negative_prompt_embeds.shape[:2]} != `negative_attention_mask`"
|
||||
f" {negative_attention_mask.shape}."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and attention_mask is None:
|
||||
raise ValueError("Please provide `attention_mask` along with `prompt_embeds`")
|
||||
|
||||
if prompt_embeds is not None and attention_mask is not None:
|
||||
if prompt_embeds.shape[:2] != attention_mask.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `attention_mask` must have the same batch_size and token length when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape[:2]} != `attention_mask`"
|
||||
f" {attention_mask.shape}."
|
||||
)
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def do_classifier_free_guidance(self):
|
||||
return self._guidance_scale > 1
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
@@ -276,11 +349,14 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
negative_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
callback_steps: int = 1,
|
||||
latents=None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
@@ -324,6 +400,10 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
attention_mask (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated attention mask. Must provide if passing `prompt_embeds` directly.
|
||||
negative_attention_mask (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
@@ -343,12 +423,53 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.ImagePipelineOutput`] or `tuple`
|
||||
|
||||
"""
|
||||
|
||||
callback = kwargs.pop("callback", None)
|
||||
callback_steps = kwargs.pop("callback_steps", None)
|
||||
|
||||
if callback is not None:
|
||||
deprecate(
|
||||
"callback",
|
||||
"1.0.0",
|
||||
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
||||
)
|
||||
if callback_steps is not None:
|
||||
deprecate(
|
||||
"callback_steps",
|
||||
"1.0.0",
|
||||
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
||||
)
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
cut_context = True
|
||||
device = self._execution_device
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
callback_steps,
|
||||
negative_prompt,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
attention_mask,
|
||||
negative_attention_mask,
|
||||
)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
@@ -357,24 +478,21 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
# 3. Encode input prompt
|
||||
prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt(
|
||||
prompt,
|
||||
do_classifier_free_guidance,
|
||||
self.do_classifier_free_guidance,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
device=device,
|
||||
negative_prompt=negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
_cut_context=cut_context,
|
||||
attention_mask=attention_mask,
|
||||
negative_attention_mask=negative_attention_mask,
|
||||
)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool()
|
||||
# 4. Prepare timesteps
|
||||
@@ -397,11 +515,11 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
self.text_encoder_offload_hook.offload()
|
||||
|
||||
# 7. Denoising loop
|
||||
# TODO(Yiyi): Correct the following line and use correctly
|
||||
# num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
self._num_timesteps = len(timesteps)
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
@@ -412,7 +530,7 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
if self.do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
|
||||
noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond
|
||||
@@ -425,26 +543,45 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
latents,
|
||||
generator=generator,
|
||||
).prev_sample
|
||||
progress_bar.update()
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
step_idx = i // getattr(self.scheduler, "order", 1)
|
||||
callback(step_idx, t, latents)
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
attention_mask = callback_outputs.pop("attention_mask", attention_mask)
|
||||
negative_attention_mask = callback_outputs.pop("negative_attention_mask", negative_attention_mask)
|
||||
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
step_idx = i // getattr(self.scheduler, "order", 1)
|
||||
callback(step_idx, t, latents)
|
||||
|
||||
# post-processing
|
||||
image = self.movq.decode(latents, force_not_quantize=True)["sample"]
|
||||
|
||||
if output_type not in ["pt", "np", "pil"]:
|
||||
if output_type not in ["pt", "np", "pil", "latent"]:
|
||||
raise ValueError(
|
||||
f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}"
|
||||
f"Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}"
|
||||
)
|
||||
|
||||
if output_type in ["np", "pil"]:
|
||||
image = image * 0.5 + 0.5
|
||||
image = image.clamp(0, 1)
|
||||
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
if not output_type == "latent":
|
||||
image = self.movq.decode(latents, force_not_quantize=True)["sample"]
|
||||
|
||||
if output_type == "pil":
|
||||
image = self.numpy_to_pil(image)
|
||||
if output_type in ["np", "pil"]:
|
||||
image = image * 0.5 + 0.5
|
||||
image = image.clamp(0, 1)
|
||||
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
|
||||
if output_type == "pil":
|
||||
image = self.numpy_to_pil(image)
|
||||
else:
|
||||
image = latents
|
||||
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
@@ -1,5 +1,5 @@
|
||||
import inspect
|
||||
from typing import Callable, List, Optional, Union
|
||||
from typing import Callable, Dict, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import PIL
|
||||
@@ -11,8 +11,10 @@ from ...loaders import LoraLoaderMixin
|
||||
from ...models import Kandinsky3UNet, VQModel
|
||||
from ...schedulers import DDPMScheduler
|
||||
from ...utils import (
|
||||
deprecate,
|
||||
is_accelerate_available,
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
||||
@@ -20,6 +22,24 @@ from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> from diffusers import AutoPipelineForImage2Image
|
||||
>>> from diffusers.utils import load_image
|
||||
>>> import torch
|
||||
|
||||
>>> pipe = AutoPipelineForImage2Image.from_pretrained("kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16)
|
||||
>>> pipe.enable_model_cpu_offload()
|
||||
|
||||
>>> prompt = "A painting of the inside of a subway train with tiny raccoons."
|
||||
>>> image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/t2i.png")
|
||||
|
||||
>>> generator = torch.Generator(device="cpu").manual_seed(0)
|
||||
>>> image = pipe(prompt, image=image, strength=0.75, num_inference_steps=25, generator=generator).images[0]
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
def downscale_height_and_width(height, width, scale_factor=8):
|
||||
new_height = height // scale_factor**2
|
||||
@@ -40,7 +60,14 @@ def prepare_image(pil_image):
|
||||
|
||||
|
||||
class Kandinsky3Img2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
model_cpu_offload_seq = "text_encoder->unet->movq"
|
||||
model_cpu_offload_seq = "text_encoder->movq->unet->movq"
|
||||
_callback_tensor_inputs = [
|
||||
"latents",
|
||||
"prompt_embeds",
|
||||
"negative_prompt_embeds",
|
||||
"negative_attention_mask",
|
||||
"attention_mask",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -99,6 +126,8 @@ class Kandinsky3Img2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
_cut_context=False,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
negative_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
@@ -123,6 +152,10 @@ class Kandinsky3Img2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
attention_mask (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated attention mask. Must provide if passing `prompt_embeds` directly.
|
||||
negative_attention_mask (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly.
|
||||
"""
|
||||
if prompt is not None and negative_prompt is not None:
|
||||
if type(prompt) is not type(negative_prompt):
|
||||
@@ -299,15 +332,23 @@ class Kandinsky3Img2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
negative_prompt=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
attention_mask=None,
|
||||
negative_attention_mask=None,
|
||||
):
|
||||
if (callback_steps is None) or (
|
||||
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
||||
):
|
||||
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
||||
raise ValueError(
|
||||
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||||
f" {type(callback_steps)}."
|
||||
)
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
@@ -334,7 +375,42 @@ class Kandinsky3Img2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
|
||||
if negative_prompt_embeds is not None and negative_attention_mask is None:
|
||||
raise ValueError("Please provide `negative_attention_mask` along with `negative_prompt_embeds`")
|
||||
|
||||
if negative_prompt_embeds is not None and negative_attention_mask is not None:
|
||||
if negative_prompt_embeds.shape[:2] != negative_attention_mask.shape:
|
||||
raise ValueError(
|
||||
"`negative_prompt_embeds` and `negative_attention_mask` must have the same batch_size and token length when passed directly, but"
|
||||
f" got: `negative_prompt_embeds` {negative_prompt_embeds.shape[:2]} != `negative_attention_mask`"
|
||||
f" {negative_attention_mask.shape}."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and attention_mask is None:
|
||||
raise ValueError("Please provide `attention_mask` along with `prompt_embeds`")
|
||||
|
||||
if prompt_embeds is not None and attention_mask is not None:
|
||||
if prompt_embeds.shape[:2] != attention_mask.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `attention_mask` must have the same batch_size and token length when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape[:2]} != `attention_mask`"
|
||||
f" {attention_mask.shape}."
|
||||
)
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def do_classifier_free_guidance(self):
|
||||
return self._guidance_scale > 1
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
@@ -347,15 +423,117 @@ class Kandinsky3Img2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
negative_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
callback_steps: int = 1,
|
||||
latents=None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
||||
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
||||
process.
|
||||
strength (`float`, *optional*, defaults to 0.8):
|
||||
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
||||
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
||||
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
||||
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
||||
essentially ignores `image`.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
guidance_scale (`float`, *optional*, defaults to 3.0):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
attention_mask (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated attention mask. Must provide if passing `prompt_embeds` directly.
|
||||
negative_attention_mask (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.ImagePipelineOutput`] or `tuple`
|
||||
|
||||
"""
|
||||
callback = kwargs.pop("callback", None)
|
||||
callback_steps = kwargs.pop("callback_steps", None)
|
||||
|
||||
if callback is not None:
|
||||
deprecate(
|
||||
"callback",
|
||||
"1.0.0",
|
||||
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
||||
)
|
||||
if callback_steps is not None:
|
||||
deprecate(
|
||||
"callback_steps",
|
||||
"1.0.0",
|
||||
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
||||
)
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
cut_context = True
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
callback_steps,
|
||||
negative_prompt,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
attention_mask,
|
||||
negative_attention_mask,
|
||||
)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
@@ -366,24 +544,21 @@ class Kandinsky3Img2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
# 3. Encode input prompt
|
||||
prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt(
|
||||
prompt,
|
||||
do_classifier_free_guidance,
|
||||
self.do_classifier_free_guidance,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
device=device,
|
||||
negative_prompt=negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
_cut_context=cut_context,
|
||||
attention_mask=attention_mask,
|
||||
negative_attention_mask=negative_attention_mask,
|
||||
)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool()
|
||||
if not isinstance(image, list):
|
||||
@@ -409,11 +584,11 @@ class Kandinsky3Img2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
self.text_encoder_offload_hook.offload()
|
||||
|
||||
# 7. Denoising loop
|
||||
# TODO(Yiyi): Correct the following line and use correctly
|
||||
# num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
self._num_timesteps = len(timesteps)
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
@@ -422,7 +597,7 @@ class Kandinsky3Img2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
encoder_attention_mask=attention_mask,
|
||||
)[0]
|
||||
if do_classifier_free_guidance:
|
||||
if self.do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
|
||||
noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond
|
||||
@@ -434,25 +609,44 @@ class Kandinsky3Img2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
latents,
|
||||
generator=generator,
|
||||
).prev_sample
|
||||
progress_bar.update()
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
step_idx = i // getattr(self.scheduler, "order", 1)
|
||||
callback(step_idx, t, latents)
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
attention_mask = callback_outputs.pop("attention_mask", attention_mask)
|
||||
negative_attention_mask = callback_outputs.pop("negative_attention_mask", negative_attention_mask)
|
||||
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
step_idx = i // getattr(self.scheduler, "order", 1)
|
||||
callback(step_idx, t, latents)
|
||||
|
||||
# post-processing
|
||||
image = self.movq.decode(latents, force_not_quantize=True)["sample"]
|
||||
|
||||
if output_type not in ["pt", "np", "pil"]:
|
||||
if output_type not in ["pt", "np", "pil", "latent"]:
|
||||
raise ValueError(
|
||||
f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}"
|
||||
f"Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}"
|
||||
)
|
||||
if not output_type == "latent":
|
||||
image = self.movq.decode(latents, force_not_quantize=True)["sample"]
|
||||
|
||||
if output_type in ["np", "pil"]:
|
||||
image = image * 0.5 + 0.5
|
||||
image = image.clamp(0, 1)
|
||||
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
if output_type in ["np", "pil"]:
|
||||
image = image * 0.5 + 0.5
|
||||
image = image.clamp(0, 1)
|
||||
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
|
||||
if output_type == "pil":
|
||||
image = self.numpy_to_pil(image)
|
||||
if output_type == "pil":
|
||||
image = self.numpy_to_pil(image)
|
||||
else:
|
||||
image = latents
|
||||
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
@@ -165,10 +165,6 @@ class Kandinsky3PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
def test_inference_batch_single_identical(self):
|
||||
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
|
||||
|
||||
def test_model_cpu_offload_forward_pass(self):
|
||||
# TODO(Yiyi) - this test should work, skipped for time reasons for now
|
||||
pass
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
|
||||
225
tests/pipelines/kandinsky3/test_kandinsky3_img2img.py
Normal file
225
tests/pipelines/kandinsky3/test_kandinsky3_img2img.py
Normal file
@@ -0,0 +1,225 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2023 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import gc
|
||||
import random
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoPipelineForImage2Image,
|
||||
Kandinsky3Img2ImgPipeline,
|
||||
Kandinsky3UNet,
|
||||
VQModel,
|
||||
)
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
||||
from diffusers.utils.testing_utils import (
|
||||
enable_full_determinism,
|
||||
floats_tensor,
|
||||
load_image,
|
||||
require_torch_gpu,
|
||||
slow,
|
||||
)
|
||||
|
||||
from ..pipeline_params import (
|
||||
IMAGE_TO_IMAGE_IMAGE_PARAMS,
|
||||
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
|
||||
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
|
||||
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
|
||||
TEXT_TO_IMAGE_IMAGE_PARAMS,
|
||||
)
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class Kandinsky3Img2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = Kandinsky3Img2ImgPipeline
|
||||
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
|
||||
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
|
||||
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
|
||||
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS
|
||||
test_xformers_attention = False
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"num_images_per_prompt",
|
||||
"generator",
|
||||
"output_type",
|
||||
"return_dict",
|
||||
]
|
||||
)
|
||||
|
||||
@property
|
||||
def dummy_movq_kwargs(self):
|
||||
return {
|
||||
"block_out_channels": [32, 64],
|
||||
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
|
||||
"in_channels": 3,
|
||||
"latent_channels": 4,
|
||||
"layers_per_block": 1,
|
||||
"norm_num_groups": 8,
|
||||
"norm_type": "spatial",
|
||||
"num_vq_embeddings": 12,
|
||||
"out_channels": 3,
|
||||
"up_block_types": [
|
||||
"AttnUpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
],
|
||||
"vq_embed_dim": 4,
|
||||
}
|
||||
|
||||
@property
|
||||
def dummy_movq(self):
|
||||
torch.manual_seed(0)
|
||||
model = VQModel(**self.dummy_movq_kwargs)
|
||||
return model
|
||||
|
||||
def get_dummy_components(self, time_cond_proj_dim=None):
|
||||
torch.manual_seed(0)
|
||||
unet = Kandinsky3UNet(
|
||||
in_channels=4,
|
||||
time_embedding_dim=4,
|
||||
groups=2,
|
||||
attention_head_dim=4,
|
||||
layers_per_block=3,
|
||||
block_out_channels=(32, 64),
|
||||
cross_attention_dim=4,
|
||||
encoder_hid_dim=32,
|
||||
)
|
||||
scheduler = DDPMScheduler(
|
||||
beta_start=0.00085,
|
||||
beta_end=0.012,
|
||||
steps_offset=1,
|
||||
beta_schedule="squaredcos_cap_v2",
|
||||
clip_sample=True,
|
||||
thresholding=False,
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
movq = self.dummy_movq
|
||||
torch.manual_seed(0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
"unet": unet,
|
||||
"scheduler": scheduler,
|
||||
"movq": movq,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
# create init_image
|
||||
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
|
||||
image = image.cpu().permute(0, 2, 3, 1)[0]
|
||||
init_image = Image.fromarray(np.uint8(image)).convert("RGB")
|
||||
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"image": init_image,
|
||||
"generator": generator,
|
||||
"strength": 0.75,
|
||||
"num_inference_steps": 10,
|
||||
"guidance_scale": 6.0,
|
||||
"output_type": "np",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_kandinsky3_img2img(self):
|
||||
device = "cpu"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe = pipe.to(device)
|
||||
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
output = pipe(**self.get_dummy_inputs(device))
|
||||
image = output.images
|
||||
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
|
||||
assert image.shape == (1, 64, 64, 3)
|
||||
|
||||
expected_slice = np.array(
|
||||
[0.576259, 0.6132097, 0.41703486, 0.603196, 0.62062526, 0.4655338, 0.5434324, 0.5660727, 0.65433365]
|
||||
)
|
||||
|
||||
assert (
|
||||
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||||
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=1e-1)
|
||||
|
||||
def test_inference_batch_single_identical(self):
|
||||
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
class Kandinsky3Img2ImgPipelineIntegrationTests(unittest.TestCase):
|
||||
def tearDown(self):
|
||||
# clean up the VRAM after each test
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def test_kandinskyV3_img2img(self):
|
||||
pipe = AutoPipelineForImage2Image.from_pretrained(
|
||||
"kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16
|
||||
)
|
||||
pipe.enable_model_cpu_offload()
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator = torch.Generator(device="cpu").manual_seed(0)
|
||||
|
||||
image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/t2i.png"
|
||||
)
|
||||
w, h = 512, 512
|
||||
image = image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1)
|
||||
prompt = "A painting of the inside of a subway train with tiny raccoons."
|
||||
|
||||
image = pipe(prompt, image=image, strength=0.75, num_inference_steps=25, generator=generator).images[0]
|
||||
|
||||
assert image.size == (512, 512)
|
||||
|
||||
expected_image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/i2i.png"
|
||||
)
|
||||
|
||||
image_processor = VaeImageProcessor()
|
||||
|
||||
image_np = image_processor.pil_to_numpy(image)
|
||||
expected_image_np = image_processor.pil_to_numpy(expected_image)
|
||||
|
||||
self.assertTrue(np.allclose(image_np, expected_image_np, atol=5e-2))
|
||||
@@ -377,6 +377,10 @@ class PipelineTesterMixin:
|
||||
with CaptureLogger(logger) as cap_logger:
|
||||
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
||||
|
||||
for component in pipe_loaded.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
|
||||
for name in pipe_loaded.components.keys():
|
||||
if name not in pipe_loaded._optional_components:
|
||||
assert name in str(cap_logger)
|
||||
|
||||
Reference in New Issue
Block a user