1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Fix all missing optional import statements from pipeline folders (#4272)

* fix circular import

* fix imports when watermark not specified

* fix all pipelines
This commit is contained in:
Patrick von Platen
2023-07-26 01:46:05 +02:00
committed by GitHub
parent ff8f58086b
commit b37dc3b3cd
11 changed files with 84 additions and 26 deletions

View File

@@ -25,7 +25,6 @@ import torch.nn.functional as F
from huggingface_hub import hf_hub_download
from torch import nn
from .models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
from .utils import (
DIFFUSERS_CACHE,
HF_HUB_OFFLINE,
@@ -69,7 +68,7 @@ CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensor
class PatchedLoraProjection(nn.Module):
def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
super().__init__()
from .models.attention_processor import LoRALinearLayer
from .models.lora import LoRALinearLayer
self.regular_linear_layer = regular_linear_layer
@@ -244,6 +243,7 @@ class UNet2DConditionLoadersMixin:
SlicedAttnAddedKVProcessor,
XFormersAttnProcessor,
)
from .models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
force_download = kwargs.pop("force_download", False)

View File

@@ -5,7 +5,7 @@ import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
@@ -27,7 +27,12 @@ class AltDiffusionPipelineOutput(BaseOutput):
nsfw_content_detected: Optional[List[bool]]
if is_transformers_available() and is_torch_available():
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .modeling_roberta_series import RobertaSeriesModelWithTransformation
from .pipeline_alt_diffusion import AltDiffusionPipeline
from .pipeline_alt_diffusion_img2img import AltDiffusionImg2ImgPipeline

View File

@@ -7,7 +7,12 @@ from ...utils import (
)
if is_transformers_available() and is_torch_available() and is_invisible_watermark_available():
try:
if not (is_transformers_available() and is_torch_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline

View File

@@ -2,7 +2,6 @@ from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
@@ -10,7 +9,7 @@ try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_img2img import KandinskyImg2ImgPipeline

View File

@@ -1,7 +1,20 @@
from .pipeline_kandinsky2_2 import KandinskyV22Pipeline
from .pipeline_kandinsky2_2_controlnet import KandinskyV22ControlnetPipeline
from .pipeline_kandinsky2_2_controlnet_img2img import KandinskyV22ControlnetImg2ImgPipeline
from .pipeline_kandinsky2_2_img2img import KandinskyV22Img2ImgPipeline
from .pipeline_kandinsky2_2_inpainting import KandinskyV22InpaintPipeline
from .pipeline_kandinsky2_2_prior import KandinskyV22PriorPipeline
from .pipeline_kandinsky2_2_prior_emb2emb import KandinskyV22PriorEmb2EmbPipeline
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_kandinsky2_2 import KandinskyV22Pipeline
from .pipeline_kandinsky2_2_controlnet import KandinskyV22ControlnetPipeline
from .pipeline_kandinsky2_2_controlnet_img2img import KandinskyV22ControlnetImg2ImgPipeline
from .pipeline_kandinsky2_2_img2img import KandinskyV22Img2ImgPipeline
from .pipeline_kandinsky2_2_inpainting import KandinskyV22InpaintPipeline
from .pipeline_kandinsky2_2_prior import KandinskyV22PriorPipeline
from .pipeline_kandinsky2_2_prior_emb2emb import KandinskyV22PriorEmb2EmbPipeline

View File

@@ -1,6 +1,11 @@
from ...utils import is_transformers_available
from ...utils import OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .pipeline_latent_diffusion_superresolution import LDMSuperResolutionPipeline
if is_transformers_available():
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .pipeline_latent_diffusion import LDMBertModel, LDMTextToImagePipeline

View File

@@ -5,9 +5,14 @@ import numpy as np
import PIL
from PIL import Image
from ...utils import is_torch_available, is_transformers_available
from ...utils import OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .image_encoder import PaintByExampleImageEncoder
from .pipeline_paint_by_example import PaintByExamplePipeline

View File

@@ -6,7 +6,7 @@ import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
@@ -27,5 +27,10 @@ class SemanticStableDiffusionPipelineOutput(BaseOutput):
nsfw_content_detected: Optional[List[bool]]
if is_transformers_available() and is_torch_available():
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline

View File

@@ -6,7 +6,7 @@ import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
@@ -66,6 +66,11 @@ class StableDiffusionSafePipelineOutput(BaseOutput):
applied_safety_concept: Optional[str]
if is_transformers_available() and is_torch_available():
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_stable_diffusion_safe import StableDiffusionPipelineSafe
from .safety_checker import SafeStableDiffusionSafetyChecker

View File

@@ -4,7 +4,13 @@ from typing import List, Optional, Union
import numpy as np
import PIL
from ...utils import BaseOutput, is_invisible_watermark_available, is_torch_available, is_transformers_available
from ...utils import (
BaseOutput,
OptionalDependencyNotAvailable,
is_invisible_watermark_available,
is_torch_available,
is_transformers_available,
)
@dataclass
@@ -21,7 +27,12 @@ class StableDiffusionXLPipelineOutput(BaseOutput):
images: Union[List[PIL.Image.Image], np.ndarray]
if is_transformers_available() and is_torch_available() and is_invisible_watermark_available():
try:
if not (is_transformers_available() and is_torch_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipeline_stable_diffusion_xl import StableDiffusionXLPipeline
from .pipeline_stable_diffusion_xl_img2img import StableDiffusionXLImg2ImgPipeline
from .pipeline_stable_diffusion_xl_inpaint import StableDiffusionXLInpaintPipeline

View File

@@ -1,5 +1,10 @@
from ...utils import is_torch_available, is_transformers_available
from ...utils import OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline