mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
committed by
GitHub
parent
44968e4204
commit
b2b3b1a8ab
@@ -238,7 +238,6 @@ class TextualInversionDataset(Dataset):
|
||||
placeholder_token="*",
|
||||
center_crop=False,
|
||||
):
|
||||
|
||||
self.data_root = data_root
|
||||
self.tokenizer = tokenizer
|
||||
self.learnable_property = learnable_property
|
||||
|
||||
4
setup.py
4
setup.py
@@ -78,7 +78,7 @@ from setuptools import find_packages, setup
|
||||
_deps = [
|
||||
"Pillow",
|
||||
"accelerate>=0.11.0",
|
||||
"black==22.3",
|
||||
"black==22.8",
|
||||
"datasets",
|
||||
"filelock",
|
||||
"flake8>=3.8.3",
|
||||
@@ -167,7 +167,7 @@ extras = {}
|
||||
|
||||
|
||||
extras = {}
|
||||
extras["quality"] = ["black==22.3", "isort>=5.5.4", "flake8>=3.8.3", "hf-doc-builder"]
|
||||
extras["quality"] = ["black==22.8", "isort>=5.5.4", "flake8>=3.8.3", "hf-doc-builder"]
|
||||
extras["docs"] = ["hf-doc-builder"]
|
||||
extras["training"] = ["accelerate", "datasets", "tensorboard", "modelcards"]
|
||||
extras["test"] = ["datasets", "onnxruntime", "pytest", "pytest-timeout", "pytest-xdist", "scipy", "transformers"]
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
deps = {
|
||||
"Pillow": "Pillow",
|
||||
"accelerate": "accelerate>=0.11.0",
|
||||
"black": "black==22.3",
|
||||
"black": "black==22.8",
|
||||
"datasets": "datasets",
|
||||
"filelock": "filelock",
|
||||
"flake8": "flake8>=3.8.3",
|
||||
|
||||
@@ -979,7 +979,6 @@ class AttnUpBlock2D(nn.Module):
|
||||
|
||||
def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
|
||||
for resnet, attn in zip(self.resnets, self.attentions):
|
||||
|
||||
# pop res hidden states
|
||||
res_hidden_states = res_hidden_states_tuple[-1]
|
||||
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
||||
@@ -1075,7 +1074,6 @@ class CrossAttnUpBlock2D(nn.Module):
|
||||
|
||||
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, encoder_hidden_states=None):
|
||||
for resnet, attn in zip(self.resnets, self.attentions):
|
||||
|
||||
# pop res hidden states
|
||||
res_hidden_states = res_hidden_states_tuple[-1]
|
||||
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
||||
@@ -1139,7 +1137,6 @@ class UpBlock2D(nn.Module):
|
||||
|
||||
def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
|
||||
for resnet in self.resnets:
|
||||
|
||||
# pop res hidden states
|
||||
res_hidden_states = res_hidden_states_tuple[-1]
|
||||
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
||||
|
||||
@@ -691,7 +691,6 @@ class LDMBertModel(LDMBertPreTrainedModel):
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
|
||||
outputs = self.model(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
|
||||
@@ -38,7 +38,6 @@ class LDMPipeline(DiffusionPipeline):
|
||||
return_dict: bool = True,
|
||||
**kwargs,
|
||||
) -> Union[Tuple, ImagePipelineOutput]:
|
||||
|
||||
r"""
|
||||
Args:
|
||||
batch_size (`int`, *optional*, defaults to 1):
|
||||
|
||||
@@ -94,7 +94,6 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
clip_sample: bool = True,
|
||||
tensor_format: str = "pt",
|
||||
):
|
||||
|
||||
if trained_betas is not None:
|
||||
self.betas = np.asarray(trained_betas)
|
||||
elif beta_schedule == "linear":
|
||||
@@ -251,7 +250,6 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
noise: Union[torch.FloatTensor, np.ndarray],
|
||||
timesteps: Union[torch.IntTensor, np.ndarray],
|
||||
) -> Union[torch.FloatTensor, np.ndarray]:
|
||||
|
||||
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
|
||||
sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
|
||||
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
|
||||
|
||||
@@ -40,7 +40,6 @@ class ScoreSdeVpScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
@register_to_config
|
||||
def __init__(self, num_train_timesteps=2000, beta_min=0.1, beta_max=20, sampling_eps=1e-3, tensor_format="np"):
|
||||
|
||||
self.sigmas = None
|
||||
self.discrete_sigmas = None
|
||||
self.timesteps = None
|
||||
|
||||
@@ -65,17 +65,14 @@ def _get_default_logging_level():
|
||||
|
||||
|
||||
def _get_library_name() -> str:
|
||||
|
||||
return __name__.split(".")[0]
|
||||
|
||||
|
||||
def _get_library_root_logger() -> logging.Logger:
|
||||
|
||||
return logging.getLogger(_get_library_name())
|
||||
|
||||
|
||||
def _configure_library_root_logger() -> None:
|
||||
|
||||
global _default_handler
|
||||
|
||||
with _lock:
|
||||
@@ -93,7 +90,6 @@ def _configure_library_root_logger() -> None:
|
||||
|
||||
|
||||
def _reset_library_root_logger() -> None:
|
||||
|
||||
global _default_handler
|
||||
|
||||
with _lock:
|
||||
|
||||
Reference in New Issue
Block a user