mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
add community pipeline: StableUnCLIPPipeline (#2037)
* add community pipeline: StableUnCLIPPipeline * reformt stable_unclip.py with isort and black
This commit is contained in:
@@ -26,6 +26,7 @@ If a community doesn't work as expected, please open an issue and ping the autho
|
||||
| Checkpoint Merger Pipeline | Diffusion Pipeline that enables merging of saved model checkpoints | [Checkpoint Merger Pipeline](#checkpoint-merger-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
|
||||
Stable Diffusion v1.1-1.4 Comparison | Run all 4 model checkpoints for Stable Diffusion and compare their results together | [Stable Diffusion Comparison](#stable-diffusion-comparisons) | - | [Suvaditya Mukherjee](https://github.com/suvadityamuk) |
|
||||
MagicMix | Diffusion Pipeline for semantic mixing of an image and a text prompt | [MagicMix](#magic-mix) | - | [Partho Das](https://github.com/daspartho) |
|
||||
| Stable UnCLIP | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ). | [Stable UnCLIP](#stable-unclip) | - |[Ray Wang](https://wrong.wang) |
|
||||
|
||||
|
||||
|
||||
@@ -861,3 +862,92 @@ E.g. the above script generates the following image:
|
||||

|
||||
|
||||
For more example generations check out this [demo notebook](https://github.com/daspartho/MagicMix/blob/main/demo.ipynb).
|
||||
|
||||
|
||||
### Stable UnCLIP
|
||||
|
||||
UnCLIPPipeline("kakaobrain/karlo-v1-alpha") provide a prior model that can generate clip image embedding from text.
|
||||
StableDiffusionImageVariationPipeline("lambdalabs/sd-image-variations-diffusers") provide a decoder model than can generate images from clip image embedding.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import DiffusionPipeline
|
||||
|
||||
device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")
|
||||
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"kakaobrain/karlo-v1-alpha",
|
||||
torch_dtype=torch.float16,
|
||||
custom_pipeline="stable_unclip",
|
||||
decoder_pipe_kwargs=dict(
|
||||
image_encoder=None,
|
||||
),
|
||||
)
|
||||
pipeline.to(device)
|
||||
|
||||
prompt = "a shiba inu wearing a beret and black turtleneck"
|
||||
random_generator = torch.Generator(device=device).manual_seed(1000)
|
||||
output = pipeline(
|
||||
prompt=prompt,
|
||||
width=512,
|
||||
height=512,
|
||||
generator=random_generator,
|
||||
prior_guidance_scale=4,
|
||||
prior_num_inference_steps=25,
|
||||
decoder_guidance_scale=8,
|
||||
decoder_num_inference_steps=50,
|
||||
)
|
||||
|
||||
image = output.images[0]
|
||||
image.save("./shiba-inu.jpg")
|
||||
|
||||
# debug
|
||||
|
||||
# `pipeline.decoder_pipe` is a regular StableDiffusionImageVariationPipeline instance.
|
||||
# It is used to convert clip image embedding to latents, then fed into VAE decoder.
|
||||
print(pipeline.decoder_pipe.__class__)
|
||||
# <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_image_variation.StableDiffusionImageVariationPipeline'>
|
||||
|
||||
# this pipeline only use prior module in "kakaobrain/karlo-v1-alpha"
|
||||
# It is used to convert clip text embedding to clip image embedding.
|
||||
print(pipeline)
|
||||
# StableUnCLIPPipeline {
|
||||
# "_class_name": "StableUnCLIPPipeline",
|
||||
# "_diffusers_version": "0.12.0.dev0",
|
||||
# "prior": [
|
||||
# "diffusers",
|
||||
# "PriorTransformer"
|
||||
# ],
|
||||
# "prior_scheduler": [
|
||||
# "diffusers",
|
||||
# "UnCLIPScheduler"
|
||||
# ],
|
||||
# "text_encoder": [
|
||||
# "transformers",
|
||||
# "CLIPTextModelWithProjection"
|
||||
# ],
|
||||
# "tokenizer": [
|
||||
# "transformers",
|
||||
# "CLIPTokenizer"
|
||||
# ]
|
||||
# }
|
||||
|
||||
# pipeline.prior_scheduler is the scheduler used for prior in UnCLIP.
|
||||
print(pipeline.prior_scheduler)
|
||||
# UnCLIPScheduler {
|
||||
# "_class_name": "UnCLIPScheduler",
|
||||
# "_diffusers_version": "0.12.0.dev0",
|
||||
# "clip_sample": true,
|
||||
# "clip_sample_range": 5.0,
|
||||
# "num_train_timesteps": 1000,
|
||||
# "prediction_type": "sample",
|
||||
# "variance_type": "fixed_small_log"
|
||||
# }
|
||||
```
|
||||
|
||||
|
||||
`shiba-inu.jpg`
|
||||
|
||||
|
||||

|
||||
|
||||
|
||||
287
examples/community/stable_unclip.py
Normal file
287
examples/community/stable_unclip.py
Normal file
@@ -0,0 +1,287 @@
|
||||
import types
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers.models import PriorTransformer
|
||||
from diffusers.pipelines import DiffusionPipeline, StableDiffusionImageVariationPipeline
|
||||
from diffusers.schedulers import UnCLIPScheduler
|
||||
from diffusers.utils import logging, randn_tensor
|
||||
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
|
||||
from transformers.models.clip.modeling_clip import CLIPTextModelOutput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance):
|
||||
image = image.to(device=device)
|
||||
image_embeddings = image # take image as image_embeddings
|
||||
image_embeddings = image_embeddings.unsqueeze(1)
|
||||
|
||||
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
||||
bs_embed, seq_len, _ = image_embeddings.shape
|
||||
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1)
|
||||
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
uncond_embeddings = torch.zeros_like(image_embeddings)
|
||||
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
image_embeddings = torch.cat([uncond_embeddings, image_embeddings])
|
||||
|
||||
return image_embeddings
|
||||
|
||||
|
||||
class StableUnCLIPPipeline(DiffusionPipeline):
|
||||
def __init__(
|
||||
self,
|
||||
prior: PriorTransformer,
|
||||
tokenizer: CLIPTokenizer,
|
||||
text_encoder: CLIPTextModelWithProjection,
|
||||
prior_scheduler: UnCLIPScheduler,
|
||||
decoder_pipe_kwargs: Optional[dict] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
decoder_pipe_kwargs = dict(image_encoder=None) if decoder_pipe_kwargs is None else decoder_pipe_kwargs
|
||||
|
||||
decoder_pipe_kwargs["torch_dtype"] = decoder_pipe_kwargs.get("torch_dtype", None) or prior.dtype
|
||||
|
||||
self.decoder_pipe = StableDiffusionImageVariationPipeline.from_pretrained(
|
||||
"lambdalabs/sd-image-variations-diffusers", **decoder_pipe_kwargs
|
||||
)
|
||||
|
||||
# replace `_encode_image` method
|
||||
self.decoder_pipe._encode_image = types.MethodType(_encode_image, self.decoder_pipe)
|
||||
|
||||
self.register_modules(
|
||||
prior=prior,
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
prior_scheduler=prior_scheduler,
|
||||
)
|
||||
|
||||
def _encode_prompt(
|
||||
self,
|
||||
prompt,
|
||||
device,
|
||||
num_images_per_prompt,
|
||||
do_classifier_free_guidance,
|
||||
text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
|
||||
text_attention_mask: Optional[torch.Tensor] = None,
|
||||
):
|
||||
if text_model_output is None:
|
||||
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
||||
# get prompt text embeddings
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
text_mask = text_inputs.attention_mask.bool().to(device)
|
||||
|
||||
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
||||
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
||||
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
||||
)
|
||||
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
||||
|
||||
text_encoder_output = self.text_encoder(text_input_ids.to(device))
|
||||
|
||||
text_embeddings = text_encoder_output.text_embeds
|
||||
text_encoder_hidden_states = text_encoder_output.last_hidden_state
|
||||
|
||||
else:
|
||||
batch_size = text_model_output[0].shape[0]
|
||||
text_embeddings, text_encoder_hidden_states = text_model_output[0], text_model_output[1]
|
||||
text_mask = text_attention_mask
|
||||
|
||||
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
|
||||
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
||||
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
uncond_tokens = [""] * batch_size
|
||||
|
||||
uncond_input = self.tokenizer(
|
||||
uncond_tokens,
|
||||
padding="max_length",
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
uncond_text_mask = uncond_input.attention_mask.bool().to(device)
|
||||
uncond_embeddings_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))
|
||||
|
||||
uncond_embeddings = uncond_embeddings_text_encoder_output.text_embeds
|
||||
uncond_text_encoder_hidden_states = uncond_embeddings_text_encoder_output.last_hidden_state
|
||||
|
||||
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
||||
|
||||
seq_len = uncond_embeddings.shape[1]
|
||||
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt)
|
||||
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len)
|
||||
|
||||
seq_len = uncond_text_encoder_hidden_states.shape[1]
|
||||
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
|
||||
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
|
||||
batch_size * num_images_per_prompt, seq_len, -1
|
||||
)
|
||||
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)
|
||||
|
||||
# done duplicates
|
||||
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
||||
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
|
||||
|
||||
text_mask = torch.cat([uncond_text_mask, text_mask])
|
||||
|
||||
return text_embeddings, text_encoder_hidden_states, text_mask
|
||||
|
||||
@property
|
||||
def _execution_device(self):
|
||||
r"""
|
||||
Returns the device on which the pipeline's models will be executed. After calling
|
||||
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
||||
hooks.
|
||||
"""
|
||||
if self.device != torch.device("meta") or not hasattr(self.prior, "_hf_hook"):
|
||||
return self.device
|
||||
for module in self.prior.modules():
|
||||
if (
|
||||
hasattr(module, "_hf_hook")
|
||||
and hasattr(module._hf_hook, "execution_device")
|
||||
and module._hf_hook.execution_device is not None
|
||||
):
|
||||
return torch.device(module._hf_hook.execution_device)
|
||||
return self.device
|
||||
|
||||
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
|
||||
if latents is None:
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
else:
|
||||
if latents.shape != shape:
|
||||
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
||||
latents = latents.to(device)
|
||||
|
||||
latents = latents * scheduler.init_noise_sigma
|
||||
return latents
|
||||
|
||||
def to(self, torch_device: Optional[Union[str, torch.device]] = None):
|
||||
self.decoder_pipe.to(torch_device)
|
||||
super().to(torch_device)
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Optional[Union[str, List[str]]] = None,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prior_num_inference_steps: int = 25,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
prior_latents: Optional[torch.FloatTensor] = None,
|
||||
text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
|
||||
text_attention_mask: Optional[torch.Tensor] = None,
|
||||
prior_guidance_scale: float = 4.0,
|
||||
decoder_guidance_scale: float = 8.0,
|
||||
decoder_num_inference_steps: int = 50,
|
||||
decoder_num_images_per_prompt: Optional[int] = 1,
|
||||
decoder_eta: float = 0.0,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
):
|
||||
if prompt is not None:
|
||||
if isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
else:
|
||||
batch_size = text_model_output[0].shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
batch_size = batch_size * num_images_per_prompt
|
||||
|
||||
do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0
|
||||
|
||||
text_embeddings, text_encoder_hidden_states, text_mask = self._encode_prompt(
|
||||
prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output, text_attention_mask
|
||||
)
|
||||
|
||||
# prior
|
||||
|
||||
self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device)
|
||||
prior_timesteps_tensor = self.prior_scheduler.timesteps
|
||||
|
||||
embedding_dim = self.prior.config.embedding_dim
|
||||
|
||||
prior_latents = self.prepare_latents(
|
||||
(batch_size, embedding_dim),
|
||||
text_embeddings.dtype,
|
||||
device,
|
||||
generator,
|
||||
prior_latents,
|
||||
self.prior_scheduler,
|
||||
)
|
||||
|
||||
for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents
|
||||
|
||||
predicted_image_embedding = self.prior(
|
||||
latent_model_input,
|
||||
timestep=t,
|
||||
proj_embedding=text_embeddings,
|
||||
encoder_hidden_states=text_encoder_hidden_states,
|
||||
attention_mask=text_mask,
|
||||
).predicted_image_embedding
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
|
||||
predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * (
|
||||
predicted_image_embedding_text - predicted_image_embedding_uncond
|
||||
)
|
||||
|
||||
if i + 1 == prior_timesteps_tensor.shape[0]:
|
||||
prev_timestep = None
|
||||
else:
|
||||
prev_timestep = prior_timesteps_tensor[i + 1]
|
||||
|
||||
prior_latents = self.prior_scheduler.step(
|
||||
predicted_image_embedding,
|
||||
timestep=t,
|
||||
sample=prior_latents,
|
||||
generator=generator,
|
||||
prev_timestep=prev_timestep,
|
||||
).prev_sample
|
||||
|
||||
prior_latents = self.prior.post_process_latents(prior_latents)
|
||||
|
||||
image_embeddings = prior_latents
|
||||
|
||||
output = self.decoder_pipe(
|
||||
image=image_embeddings,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=decoder_num_inference_steps,
|
||||
guidance_scale=decoder_guidance_scale,
|
||||
generator=generator,
|
||||
output_type=output_type,
|
||||
return_dict=return_dict,
|
||||
num_images_per_prompt=decoder_num_images_per_prompt,
|
||||
eta=decoder_eta,
|
||||
)
|
||||
return output
|
||||
Reference in New Issue
Block a user