1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

make from pretrained more general

This commit is contained in:
Patrick von Platen
2022-06-08 09:13:47 +00:00
parent db3757aa06
commit ae81c3d696
6 changed files with 122 additions and 12 deletions

View File

@@ -0,0 +1,28 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Denoising Diffusion Implicit Models (DDIM)
## Overview
DDPM was proposed in [Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) by *Jiaming Song, Chenlin Meng, Stefano Ermon*
The abstract from the paper is the following:
*Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.*
Tips:
- ...
- ...
This model was contributed by [???](https://huggingface.co/???). The original code can be found [here](https://github.com/hojonathanho/diffusion).

View File

@@ -0,0 +1,67 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from diffusers import DiffusionPipeline
import tqdm
import torch
def compute_alpha(beta, t):
beta = torch.cat([torch.zeros(1).to(beta.device), beta], dim=0)
a = (1 - beta).cumprod(dim=0).index_select(0, t + 1).view(-1, 1, 1, 1)
return a
class DDIM(DiffusionPipeline):
def __init__(self, unet, noise_scheduler):
super().__init__()
self.register_modules(unet=unet, noise_scheduler=noise_scheduler)
def __call__(self, batch_size=1, generator=None, torch_device=None, eta=0.0, inference_time_steps=50):
seq = range(0, self.num_timesteps, self.num_timesteps // inference_time_steps)
b = self.noise_scheduler.betas
if torch_device is None:
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
self.unet.to(torch_device)
x = self.noise_scheduler.sample_noise((batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution), device=torch_device, generator=generator)
with torch.no_grad():
n = batch_size
seq_next = [-1] + list(seq[:-1])
x0_preds = []
xs = [x]
for i, j in zip(reversed(seq), reversed(seq_next)):
print(i)
t = (torch.ones(n) * i).to(x.device)
next_t = (torch.ones(n) * j).to(x.device)
at = compute_alpha(b, t.long())
at_next = compute_alpha(b, next_t.long())
xt = xs[-1].to('cuda')
et = self.unet(xt, t)
x0_t = (xt - et * (1 - at).sqrt()) / at.sqrt()
x0_preds.append(x0_t.to('cpu'))
# eta
c1 = (
eta * ((1 - at / at_next) * (1 - at_next) / (1 - at)).sqrt()
)
c2 = ((1 - at_next) - c1 ** 2).sqrt()
xt_next = at_next.sqrt() * x0_t + c1 * torch.randn_like(x) + c2 * et
xs.append(xt_next.to('cpu'))
import ipdb; ipdb.set_trace()
return xs, x0_preds

17
models/vision/ddim/run_ddpm.py Executable file
View File

@@ -0,0 +1,17 @@
#!/usr/bin/env python3
import torch
from diffusers import GaussianDDPMScheduler, UNetModel
model = UNetModel(dim=64, dim_mults=(1, 2, 4, 8))
diffusion = GaussianDDPMScheduler(model, image_size=128, timesteps=1000, loss_type="l1") # number of steps # L1 or L2
training_images = torch.randn(8, 3, 128, 128) # your images need to be normalized from a range of -1 to +1
loss = diffusion(training_images)
loss.backward()
# after a lot of training
sampled_images = diffusion.sample(batch_size=4)
sampled_images.shape # (4, 3, 128, 128)

View File

@@ -1,6 +1,6 @@
#!/usr/bin/env python3
# !pip install diffusers
from diffusers import DiffusionPipeline
from modeling_ddim import DDIM
import PIL.Image
import numpy as np
@@ -8,7 +8,7 @@ model_id = "fusing/ddpm-cifar10"
model_id = "fusing/ddpm-lsun-bedroom"
# load model and scheduler
ddpm = DiffusionPipeline.from_pretrained(model_id)
ddpm = DDIM.from_pretrained(model_id)
# run pipeline in inference (sample random noise and denoise)
image = ddpm()

View File

@@ -21,8 +21,6 @@ import torch
class DDPM(DiffusionPipeline):
modeling_file = "modeling_ddpm.py"
def __init__(self, unet, noise_scheduler):
super().__init__()
self.register_modules(unet=unet, noise_scheduler=noise_scheduler)

View File

@@ -55,14 +55,13 @@ class DiffusionPipeline(ConfigMixin):
class_name = module.__class__.__name__
register_dict = {name: (library, class_name)}
# save model index config
self.register(**register_dict)
# set models
setattr(self, name, module)
register_dict = {"_module" : self.__module__.split(".")[-1] + ".py"}
self.register(**register_dict)
@@ -101,15 +100,15 @@ class DiffusionPipeline(ConfigMixin):
cached_folder = pretrained_model_name_or_path
config_dict = cls.get_config_dict(cached_folder)
module = config_dict["_module"]
class_name_ = config_dict["_class_name"]
if class_name_ == cls.__name__:
# if we load from explicit class, let's use it
if cls != DiffusionPipeline:
pipeline_class = cls
else:
# else we need to load the correct module from the Hub
class_name_ = config_dict["_class_name"]
module = config_dict["_module"]
pipeline_class = get_class_from_dynamic_module(cached_folder, module, class_name_, cached_folder)
init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
@@ -120,6 +119,7 @@ class DiffusionPipeline(ConfigMixin):
if library_name == module:
# TODO(Suraj)
# for vq
pass
library = importlib.import_module(library_name)