mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
Merge branch 'main' into support-diffusers-ckpt-gguf
This commit is contained in:
@@ -133,6 +133,7 @@ def _register_attention_processors_metadata():
|
||||
skip_processor_output_fn=_skip_proc_output_fn_Attention_WanAttnProcessor2_0,
|
||||
),
|
||||
)
|
||||
|
||||
# FluxAttnProcessor
|
||||
AttentionProcessorRegistry.register(
|
||||
model_class=FluxAttnProcessor,
|
||||
|
||||
43
src/diffusers/hooks/utils.py
Normal file
43
src/diffusers/hooks/utils.py
Normal file
@@ -0,0 +1,43 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
|
||||
from ._common import _ALL_TRANSFORMER_BLOCK_IDENTIFIERS, _ATTENTION_CLASSES, _FEEDFORWARD_CLASSES
|
||||
|
||||
|
||||
def _get_identifiable_transformer_blocks_in_module(module: torch.nn.Module):
|
||||
module_list_with_transformer_blocks = []
|
||||
for name, submodule in module.named_modules():
|
||||
name_endswith_identifier = any(name.endswith(identifier) for identifier in _ALL_TRANSFORMER_BLOCK_IDENTIFIERS)
|
||||
is_modulelist = isinstance(submodule, torch.nn.ModuleList)
|
||||
if name_endswith_identifier and is_modulelist:
|
||||
module_list_with_transformer_blocks.append((name, submodule))
|
||||
return module_list_with_transformer_blocks
|
||||
|
||||
|
||||
def _get_identifiable_attention_layers_in_module(module: torch.nn.Module):
|
||||
attention_layers = []
|
||||
for name, submodule in module.named_modules():
|
||||
if isinstance(submodule, _ATTENTION_CLASSES):
|
||||
attention_layers.append((name, submodule))
|
||||
return attention_layers
|
||||
|
||||
|
||||
def _get_identifiable_feedforward_layers_in_module(module: torch.nn.Module):
|
||||
feedforward_layers = []
|
||||
for name, submodule in module.named_modules():
|
||||
if isinstance(submodule, _FEEDFORWARD_CLASSES):
|
||||
feedforward_layers.append((name, submodule))
|
||||
return feedforward_layers
|
||||
@@ -310,7 +310,7 @@ class FluxPipeline(
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
|
||||
@@ -324,7 +324,7 @@ class FluxControlPipeline(
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
|
||||
@@ -335,7 +335,7 @@ class FluxControlImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSin
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
|
||||
@@ -374,7 +374,7 @@ class FluxControlInpaintPipeline(
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
|
||||
@@ -341,7 +341,7 @@ class FluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleF
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
|
||||
@@ -335,7 +335,7 @@ class FluxControlNetImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin, From
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
|
||||
@@ -346,7 +346,7 @@ class FluxControlNetInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin, From
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
|
||||
@@ -419,7 +419,7 @@ class FluxFillPipeline(
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
|
||||
@@ -333,7 +333,7 @@ class FluxImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFile
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
|
||||
@@ -337,7 +337,7 @@ class FluxInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FluxIPAdapterM
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
|
||||
@@ -358,7 +358,7 @@ class FluxKontextPipeline(
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
|
||||
@@ -391,7 +391,7 @@ class FluxKontextInpaintPipeline(
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
|
||||
@@ -292,7 +292,7 @@ class FluxPriorReduxPipeline(DiffusionPipeline):
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
|
||||
Reference in New Issue
Block a user