mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
@@ -19,7 +19,6 @@ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers import (
|
||||
CLIPImageProcessor,
|
||||
CLIPTextModel,
|
||||
@@ -38,7 +37,13 @@ from ...loaders import (
|
||||
StableDiffusionXLLoraLoaderMixin,
|
||||
TextualInversionLoaderMixin,
|
||||
)
|
||||
from ...models import AutoencoderKL, ControlNetModel, ControlNetUnionModel, ImageProjection, UNet2DConditionModel
|
||||
from ...models import (
|
||||
AutoencoderKL,
|
||||
ControlNetUnionModel,
|
||||
ImageProjection,
|
||||
MultiControlNetUnionModel,
|
||||
UNet2DConditionModel,
|
||||
)
|
||||
from ...models.attention_processor import (
|
||||
AttnProcessor2_0,
|
||||
XFormersAttnProcessor,
|
||||
@@ -262,7 +267,9 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
|
||||
tokenizer: CLIPTokenizer,
|
||||
tokenizer_2: CLIPTokenizer,
|
||||
unet: UNet2DConditionModel,
|
||||
controlnet: ControlNetUnionModel,
|
||||
controlnet: Union[
|
||||
ControlNetUnionModel, List[ControlNetUnionModel], Tuple[ControlNetUnionModel], MultiControlNetUnionModel
|
||||
],
|
||||
scheduler: KarrasDiffusionSchedulers,
|
||||
requires_aesthetics_score: bool = False,
|
||||
force_zeros_for_empty_prompt: bool = True,
|
||||
@@ -272,8 +279,8 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if not isinstance(controlnet, ControlNetUnionModel):
|
||||
raise ValueError("Expected `controlnet` to be of type `ControlNetUnionModel`.")
|
||||
if isinstance(controlnet, (list, tuple)):
|
||||
controlnet = MultiControlNetUnionModel(controlnet)
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
@@ -649,6 +656,7 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
|
||||
controlnet_conditioning_scale=1.0,
|
||||
control_guidance_start=0.0,
|
||||
control_guidance_end=1.0,
|
||||
control_mode=None,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
):
|
||||
if strength < 0 or strength > 1:
|
||||
@@ -722,28 +730,44 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
|
||||
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
||||
)
|
||||
|
||||
# `prompt` needs more sophisticated handling when there are multiple
|
||||
# conditionings.
|
||||
if isinstance(self.controlnet, MultiControlNetUnionModel):
|
||||
if isinstance(prompt, list):
|
||||
logger.warning(
|
||||
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
|
||||
" prompts. The conditionings will be fixed across the prompts."
|
||||
)
|
||||
|
||||
# Check `image`
|
||||
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
||||
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
||||
)
|
||||
if (
|
||||
isinstance(self.controlnet, ControlNetModel)
|
||||
or is_compiled
|
||||
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
||||
):
|
||||
self.check_image(image, prompt, prompt_embeds)
|
||||
elif (
|
||||
isinstance(self.controlnet, ControlNetUnionModel)
|
||||
or is_compiled
|
||||
and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
|
||||
):
|
||||
self.check_image(image, prompt, prompt_embeds)
|
||||
else:
|
||||
assert False
|
||||
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
||||
|
||||
if isinstance(controlnet, ControlNetUnionModel):
|
||||
for image_ in image:
|
||||
self.check_image(image_, prompt, prompt_embeds)
|
||||
elif isinstance(controlnet, MultiControlNetUnionModel):
|
||||
if not isinstance(image, list):
|
||||
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
||||
elif not all(isinstance(i, list) for i in image):
|
||||
raise ValueError("For multiple controlnets: elements of `image` must be list of conditionings.")
|
||||
elif len(image) != len(self.controlnet.nets):
|
||||
raise ValueError(
|
||||
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
|
||||
)
|
||||
|
||||
for images_ in image:
|
||||
for image_ in images_:
|
||||
self.check_image(image_, prompt, prompt_embeds)
|
||||
|
||||
if not isinstance(control_guidance_start, (tuple, list)):
|
||||
control_guidance_start = [control_guidance_start]
|
||||
|
||||
if isinstance(controlnet, MultiControlNetUnionModel):
|
||||
if len(control_guidance_start) != len(self.controlnet.nets):
|
||||
raise ValueError(
|
||||
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
|
||||
)
|
||||
|
||||
if not isinstance(control_guidance_end, (tuple, list)):
|
||||
control_guidance_end = [control_guidance_end]
|
||||
|
||||
@@ -762,6 +786,15 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
|
||||
if end > 1.0:
|
||||
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
||||
|
||||
# Check `control_mode`
|
||||
if isinstance(controlnet, ControlNetUnionModel):
|
||||
if max(control_mode) >= controlnet.config.num_control_type:
|
||||
raise ValueError(f"control_mode: must be lower than {controlnet.config.num_control_type}.")
|
||||
elif isinstance(controlnet, MultiControlNetUnionModel):
|
||||
for _control_mode, _controlnet in zip(control_mode, self.controlnet.nets):
|
||||
if max(_control_mode) >= _controlnet.config.num_control_type:
|
||||
raise ValueError(f"control_mode: must be lower than {_controlnet.config.num_control_type}.")
|
||||
|
||||
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
||||
raise ValueError(
|
||||
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
||||
@@ -1049,7 +1082,7 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
|
||||
prompt: Union[str, List[str]] = None,
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
image: PipelineImageInput = None,
|
||||
control_image: PipelineImageInput = None,
|
||||
control_image: Union[PipelineImageInput, List[PipelineImageInput]] = None,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
strength: float = 0.8,
|
||||
@@ -1074,7 +1107,7 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
|
||||
guess_mode: bool = False,
|
||||
control_guidance_start: Union[float, List[float]] = 0.0,
|
||||
control_guidance_end: Union[float, List[float]] = 1.0,
|
||||
control_mode: Optional[Union[int, List[int]]] = None,
|
||||
control_mode: Optional[Union[int, List[int], List[List[int]]]] = None,
|
||||
original_size: Tuple[int, int] = None,
|
||||
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
||||
target_size: Tuple[int, int] = None,
|
||||
@@ -1104,13 +1137,13 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
|
||||
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
||||
The initial image will be used as the starting point for the image generation process. Can also accept
|
||||
image latents as `image`, if passing latents directly, it will not be encoded again.
|
||||
control_image (`PipelineImageInput`):
|
||||
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
||||
the type is specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also
|
||||
be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
|
||||
and/or width are passed, `image` is resized according to them. If multiple ControlNets are specified in
|
||||
init, images must be passed as a list such that each element of the list can be correctly batched for
|
||||
input to a single controlnet.
|
||||
control_image (`PipelineImageInput` or `List[PipelineImageInput]`, *optional*):
|
||||
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
||||
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
||||
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
||||
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
||||
images must be passed as a list such that each element of the list can be correctly batched for input
|
||||
to a single ControlNet.
|
||||
height (`int`, *optional*, defaults to the size of control_image):
|
||||
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
||||
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
||||
@@ -1184,16 +1217,21 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
||||
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
||||
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
|
||||
corresponding scale as a list.
|
||||
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
||||
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
||||
the corresponding scale as a list.
|
||||
guess_mode (`bool`, *optional*, defaults to `False`):
|
||||
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
|
||||
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
|
||||
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
||||
The percentage of total steps at which the controlnet starts applying.
|
||||
The percentage of total steps at which the ControlNet starts applying.
|
||||
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
||||
The percentage of total steps at which the controlnet stops applying.
|
||||
The percentage of total steps at which the ControlNet stops applying.
|
||||
control_mode (`int` or `List[int]` or `List[List[int]], *optional*):
|
||||
The control condition types for the ControlNet. See the ControlNet's model card forinformation on the
|
||||
available control modes. If multiple ControlNets are specified in `init`, control_mode should be a list
|
||||
where each ControlNet should have its corresponding control mode list. Should reflect the order of
|
||||
conditions in control_image
|
||||
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
||||
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
||||
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
||||
@@ -1273,12 +1311,6 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
|
||||
|
||||
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
||||
|
||||
# align format for control guidance
|
||||
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
||||
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
||||
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
||||
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
||||
|
||||
if not isinstance(control_image, list):
|
||||
control_image = [control_image]
|
||||
else:
|
||||
@@ -1287,37 +1319,56 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
|
||||
if not isinstance(control_mode, list):
|
||||
control_mode = [control_mode]
|
||||
|
||||
if len(control_image) != len(control_mode):
|
||||
raise ValueError("Expected len(control_image) == len(control_type)")
|
||||
if isinstance(controlnet, MultiControlNetUnionModel):
|
||||
control_image = [[item] for item in control_image]
|
||||
control_mode = [[item] for item in control_mode]
|
||||
|
||||
num_control_type = controlnet.config.num_control_type
|
||||
|
||||
# 1. Check inputs
|
||||
control_type = [0 for _ in range(num_control_type)]
|
||||
for _image, control_idx in zip(control_image, control_mode):
|
||||
control_type[control_idx] = 1
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
prompt_2,
|
||||
_image,
|
||||
strength,
|
||||
num_inference_steps,
|
||||
callback_steps,
|
||||
negative_prompt,
|
||||
negative_prompt_2,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds,
|
||||
ip_adapter_image,
|
||||
ip_adapter_image_embeds,
|
||||
controlnet_conditioning_scale,
|
||||
control_guidance_start,
|
||||
control_guidance_end,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
# align format for control guidance
|
||||
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
||||
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
||||
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
||||
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
||||
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
||||
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetUnionModel) else len(control_mode)
|
||||
control_guidance_start, control_guidance_end = (
|
||||
mult * [control_guidance_start],
|
||||
mult * [control_guidance_end],
|
||||
)
|
||||
|
||||
control_type = torch.Tensor(control_type)
|
||||
if isinstance(controlnet_conditioning_scale, float):
|
||||
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetUnionModel) else len(control_mode)
|
||||
controlnet_conditioning_scale = [controlnet_conditioning_scale] * mult
|
||||
|
||||
# 1. Check inputs
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
prompt_2,
|
||||
control_image,
|
||||
strength,
|
||||
num_inference_steps,
|
||||
callback_steps,
|
||||
negative_prompt,
|
||||
negative_prompt_2,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds,
|
||||
ip_adapter_image,
|
||||
ip_adapter_image_embeds,
|
||||
controlnet_conditioning_scale,
|
||||
control_guidance_start,
|
||||
control_guidance_end,
|
||||
control_mode,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
)
|
||||
|
||||
if isinstance(controlnet, ControlNetUnionModel):
|
||||
control_type = torch.zeros(controlnet.config.num_control_type).scatter_(0, torch.tensor(control_mode), 1)
|
||||
elif isinstance(controlnet, MultiControlNetUnionModel):
|
||||
control_type = [
|
||||
torch.zeros(controlnet_.config.num_control_type).scatter_(0, torch.tensor(control_mode_), 1)
|
||||
for control_mode_, controlnet_ in zip(control_mode, self.controlnet.nets)
|
||||
]
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._clip_skip = clip_skip
|
||||
@@ -1334,7 +1385,11 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
global_pool_conditions = controlnet.config.global_pool_conditions
|
||||
global_pool_conditions = (
|
||||
controlnet.config.global_pool_conditions
|
||||
if isinstance(controlnet, ControlNetUnionModel)
|
||||
else controlnet.nets[0].config.global_pool_conditions
|
||||
)
|
||||
guess_mode = guess_mode or global_pool_conditions
|
||||
|
||||
# 3.1. Encode input prompt
|
||||
@@ -1372,22 +1427,55 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
|
||||
self.do_classifier_free_guidance,
|
||||
)
|
||||
|
||||
# 4. Prepare image and controlnet_conditioning_image
|
||||
# 4.1 Prepare image
|
||||
image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
||||
|
||||
for idx, _ in enumerate(control_image):
|
||||
control_image[idx] = self.prepare_control_image(
|
||||
image=control_image[idx],
|
||||
width=width,
|
||||
height=height,
|
||||
batch_size=batch_size * num_images_per_prompt,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
device=device,
|
||||
dtype=controlnet.dtype,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
guess_mode=guess_mode,
|
||||
)
|
||||
height, width = control_image[idx].shape[-2:]
|
||||
# 4.2 Prepare control images
|
||||
if isinstance(controlnet, ControlNetUnionModel):
|
||||
control_images = []
|
||||
|
||||
for image_ in control_image:
|
||||
image_ = self.prepare_control_image(
|
||||
image=image_,
|
||||
width=width,
|
||||
height=height,
|
||||
batch_size=batch_size * num_images_per_prompt,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
device=device,
|
||||
dtype=controlnet.dtype,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
guess_mode=guess_mode,
|
||||
)
|
||||
|
||||
control_images.append(image_)
|
||||
|
||||
control_image = control_images
|
||||
height, width = control_image[0].shape[-2:]
|
||||
|
||||
elif isinstance(controlnet, MultiControlNetUnionModel):
|
||||
control_images = []
|
||||
|
||||
for control_image_ in control_image:
|
||||
images = []
|
||||
|
||||
for image_ in control_image_:
|
||||
image_ = self.prepare_control_image(
|
||||
image=image_,
|
||||
width=width,
|
||||
height=height,
|
||||
batch_size=batch_size * num_images_per_prompt,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
device=device,
|
||||
dtype=controlnet.dtype,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
guess_mode=guess_mode,
|
||||
)
|
||||
|
||||
images.append(image_)
|
||||
control_images.append(images)
|
||||
|
||||
control_image = control_images
|
||||
height, width = control_image[0][0].shape[-2:]
|
||||
|
||||
# 5. Prepare timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
@@ -1414,10 +1502,11 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
|
||||
# 7.1 Create tensor stating which controlnets to keep
|
||||
controlnet_keep = []
|
||||
for i in range(len(timesteps)):
|
||||
controlnet_keep.append(
|
||||
1.0
|
||||
- float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end)
|
||||
)
|
||||
keeps = [
|
||||
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
||||
for s, e in zip(control_guidance_start, control_guidance_end)
|
||||
]
|
||||
controlnet_keep.append(keeps)
|
||||
|
||||
# 7.2 Prepare added time ids & embeddings
|
||||
original_size = original_size or (height, width)
|
||||
@@ -1460,12 +1549,25 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
|
||||
prompt_embeds = prompt_embeds.to(device)
|
||||
add_text_embeds = add_text_embeds.to(device)
|
||||
add_time_ids = add_time_ids.to(device)
|
||||
control_type = (
|
||||
control_type.reshape(1, -1)
|
||||
.to(device, dtype=prompt_embeds.dtype)
|
||||
.repeat(batch_size * num_images_per_prompt * 2, 1)
|
||||
|
||||
control_type_repeat_factor = (
|
||||
batch_size * num_images_per_prompt * (2 if self.do_classifier_free_guidance else 1)
|
||||
)
|
||||
|
||||
if isinstance(controlnet, ControlNetUnionModel):
|
||||
control_type = (
|
||||
control_type.reshape(1, -1)
|
||||
.to(self._execution_device, dtype=prompt_embeds.dtype)
|
||||
.repeat(control_type_repeat_factor, 1)
|
||||
)
|
||||
elif isinstance(controlnet, MultiControlNetUnionModel):
|
||||
control_type = [
|
||||
_control_type.reshape(1, -1)
|
||||
.to(self._execution_device, dtype=prompt_embeds.dtype)
|
||||
.repeat(control_type_repeat_factor, 1)
|
||||
for _control_type in control_type
|
||||
]
|
||||
|
||||
# 8. Denoising loop
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
|
||||
Reference in New Issue
Block a user