mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[LoRA] refactor lora conversion utility. (#8295)
* refactor lora conversion utility. * remove error raises. * add onetrainer support too.
This commit is contained in:
@@ -43,7 +43,7 @@ from ..utils import (
|
||||
set_adapter_layers,
|
||||
set_weights_and_activate_adapters,
|
||||
)
|
||||
from .lora_conversion_utils import _convert_kohya_lora_to_diffusers, _maybe_map_sgm_blocks_to_diffusers
|
||||
from .lora_conversion_utils import _convert_non_diffusers_lora_to_diffusers, _maybe_map_sgm_blocks_to_diffusers
|
||||
|
||||
|
||||
if is_transformers_available():
|
||||
@@ -288,7 +288,7 @@ class LoraLoaderMixin:
|
||||
if unet_config is not None:
|
||||
# use unet config to remap block numbers
|
||||
state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
|
||||
state_dict, network_alphas = _convert_kohya_lora_to_diffusers(state_dict)
|
||||
state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)
|
||||
|
||||
return state_dict, network_alphas
|
||||
|
||||
|
||||
@@ -123,134 +123,76 @@ def _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config, delimiter="_", b
|
||||
return new_state_dict
|
||||
|
||||
|
||||
def _convert_kohya_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_name="text_encoder"):
|
||||
def _convert_non_diffusers_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_name="text_encoder"):
|
||||
"""
|
||||
Converts a non-Diffusers LoRA state dict to a Diffusers compatible state dict.
|
||||
|
||||
Args:
|
||||
state_dict (`dict`): The state dict to convert.
|
||||
unet_name (`str`, optional): The name of the U-Net module in the Diffusers model. Defaults to "unet".
|
||||
text_encoder_name (`str`, optional): The name of the text encoder module in the Diffusers model. Defaults to
|
||||
"text_encoder".
|
||||
|
||||
Returns:
|
||||
`tuple`: A tuple containing the converted state dict and a dictionary of alphas.
|
||||
"""
|
||||
unet_state_dict = {}
|
||||
te_state_dict = {}
|
||||
te2_state_dict = {}
|
||||
network_alphas = {}
|
||||
is_unet_dora_lora = any("dora_scale" in k and "lora_unet_" in k for k in state_dict)
|
||||
is_te_dora_lora = any("dora_scale" in k and ("lora_te_" in k or "lora_te1_" in k) for k in state_dict)
|
||||
is_te2_dora_lora = any("dora_scale" in k and "lora_te2_" in k for k in state_dict)
|
||||
|
||||
if is_unet_dora_lora or is_te_dora_lora or is_te2_dora_lora:
|
||||
# Check for DoRA-enabled LoRAs.
|
||||
if any(
|
||||
"dora_scale" in k and ("lora_unet_" in k or "lora_te_" in k or "lora_te1_" in k or "lora_te2_" in k)
|
||||
for k in state_dict
|
||||
):
|
||||
if is_peft_version("<", "0.9.0"):
|
||||
raise ValueError(
|
||||
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
|
||||
)
|
||||
|
||||
# every down weight has a corresponding up weight and potentially an alpha weight
|
||||
lora_keys = [k for k in state_dict.keys() if k.endswith("lora_down.weight")]
|
||||
for key in lora_keys:
|
||||
# Iterate over all LoRA weights.
|
||||
all_lora_keys = list(state_dict.keys())
|
||||
for key in all_lora_keys:
|
||||
if not key.endswith("lora_down.weight"):
|
||||
continue
|
||||
|
||||
# Extract LoRA name.
|
||||
lora_name = key.split(".")[0]
|
||||
|
||||
# Find corresponding up weight and alpha.
|
||||
lora_name_up = lora_name + ".lora_up.weight"
|
||||
lora_name_alpha = lora_name + ".alpha"
|
||||
|
||||
# Handle U-Net LoRAs.
|
||||
if lora_name.startswith("lora_unet_"):
|
||||
diffusers_name = key.replace("lora_unet_", "").replace("_", ".")
|
||||
diffusers_name = _convert_unet_lora_key(key)
|
||||
|
||||
if "input.blocks" in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
|
||||
else:
|
||||
diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
|
||||
# Store down and up weights.
|
||||
unet_state_dict[diffusers_name] = state_dict.pop(key)
|
||||
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
|
||||
|
||||
if "middle.block" in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("middle.block", "mid_block")
|
||||
else:
|
||||
diffusers_name = diffusers_name.replace("mid.block", "mid_block")
|
||||
if "output.blocks" in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
|
||||
else:
|
||||
diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
|
||||
|
||||
diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
|
||||
diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
|
||||
diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
|
||||
diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
|
||||
diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
|
||||
diffusers_name = diffusers_name.replace("proj.in", "proj_in")
|
||||
diffusers_name = diffusers_name.replace("proj.out", "proj_out")
|
||||
diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")
|
||||
|
||||
# SDXL specificity.
|
||||
if "emb" in diffusers_name and "time.emb.proj" not in diffusers_name:
|
||||
pattern = r"\.\d+(?=\D*$)"
|
||||
diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
|
||||
if ".in." in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
|
||||
if ".out." in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
|
||||
if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("op", "conv")
|
||||
if "skip" in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")
|
||||
|
||||
# LyCORIS specificity.
|
||||
if "time.emb.proj" in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("time.emb.proj", "time_emb_proj")
|
||||
if "conv.shortcut" in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("conv.shortcut", "conv_shortcut")
|
||||
|
||||
# General coverage.
|
||||
if "transformer_blocks" in diffusers_name:
|
||||
if "attn1" in diffusers_name or "attn2" in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
|
||||
diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
|
||||
unet_state_dict[diffusers_name] = state_dict.pop(key)
|
||||
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
|
||||
elif "ff" in diffusers_name:
|
||||
unet_state_dict[diffusers_name] = state_dict.pop(key)
|
||||
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
|
||||
elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
|
||||
unet_state_dict[diffusers_name] = state_dict.pop(key)
|
||||
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
|
||||
else:
|
||||
unet_state_dict[diffusers_name] = state_dict.pop(key)
|
||||
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
|
||||
|
||||
if is_unet_dora_lora:
|
||||
# Store DoRA scale if present.
|
||||
if "dora_scale" in state_dict:
|
||||
dora_scale_key_to_replace = "_lora.down." if "_lora.down." in diffusers_name else ".lora.down."
|
||||
unet_state_dict[
|
||||
diffusers_name.replace(dora_scale_key_to_replace, ".lora_magnitude_vector.")
|
||||
] = state_dict.pop(key.replace("lora_down.weight", "dora_scale"))
|
||||
|
||||
# Handle text encoder LoRAs.
|
||||
elif lora_name.startswith(("lora_te_", "lora_te1_", "lora_te2_")):
|
||||
diffusers_name = _convert_text_encoder_lora_key(key, lora_name)
|
||||
|
||||
# Store down and up weights for te or te2.
|
||||
if lora_name.startswith(("lora_te_", "lora_te1_")):
|
||||
key_to_replace = "lora_te_" if lora_name.startswith("lora_te_") else "lora_te1_"
|
||||
te_state_dict[diffusers_name] = state_dict.pop(key)
|
||||
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
|
||||
else:
|
||||
key_to_replace = "lora_te2_"
|
||||
|
||||
diffusers_name = key.replace(key_to_replace, "").replace("_", ".")
|
||||
diffusers_name = diffusers_name.replace("text.model", "text_model")
|
||||
diffusers_name = diffusers_name.replace("self.attn", "self_attn")
|
||||
diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
|
||||
diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
|
||||
diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
|
||||
diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
|
||||
diffusers_name = diffusers_name.replace("text.projection", "text_projection")
|
||||
|
||||
if "self_attn" in diffusers_name:
|
||||
if lora_name.startswith(("lora_te_", "lora_te1_")):
|
||||
te_state_dict[diffusers_name] = state_dict.pop(key)
|
||||
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
|
||||
else:
|
||||
te2_state_dict[diffusers_name] = state_dict.pop(key)
|
||||
te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
|
||||
elif "mlp" in diffusers_name:
|
||||
# Be aware that this is the new diffusers convention and the rest of the code might
|
||||
# not utilize it yet.
|
||||
diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
|
||||
if lora_name.startswith(("lora_te_", "lora_te1_")):
|
||||
te_state_dict[diffusers_name] = state_dict.pop(key)
|
||||
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
|
||||
else:
|
||||
te2_state_dict[diffusers_name] = state_dict.pop(key)
|
||||
te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
|
||||
# OneTrainer specificity
|
||||
elif "text_projection" in diffusers_name and lora_name.startswith("lora_te2_"):
|
||||
te2_state_dict[diffusers_name] = state_dict.pop(key)
|
||||
te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
|
||||
|
||||
if (is_te_dora_lora or is_te2_dora_lora) and lora_name.startswith(("lora_te_", "lora_te1_", "lora_te2_")):
|
||||
# Store DoRA scale if present.
|
||||
if "dora_scale" in state_dict:
|
||||
dora_scale_key_to_replace_te = (
|
||||
"_lora.down." if "_lora.down." in diffusers_name else ".lora_linear_layer."
|
||||
)
|
||||
@@ -263,22 +205,18 @@ def _convert_kohya_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_
|
||||
diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")
|
||||
] = state_dict.pop(key.replace("lora_down.weight", "dora_scale"))
|
||||
|
||||
# Rename the alphas so that they can be mapped appropriately.
|
||||
# Store alpha if present.
|
||||
if lora_name_alpha in state_dict:
|
||||
alpha = state_dict.pop(lora_name_alpha).item()
|
||||
if lora_name_alpha.startswith("lora_unet_"):
|
||||
prefix = "unet."
|
||||
elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
|
||||
prefix = "text_encoder."
|
||||
else:
|
||||
prefix = "text_encoder_2."
|
||||
new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
|
||||
network_alphas.update({new_name: alpha})
|
||||
network_alphas.update(_get_alpha_name(lora_name_alpha, diffusers_name, alpha))
|
||||
|
||||
# Check if any keys remain.
|
||||
if len(state_dict) > 0:
|
||||
raise ValueError(f"The following keys have not been correctly renamed: \n\n {', '.join(state_dict.keys())}")
|
||||
|
||||
logger.info("Kohya-style checkpoint detected.")
|
||||
|
||||
# Construct final state dict.
|
||||
unet_state_dict = {f"{unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
|
||||
te_state_dict = {f"{text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()}
|
||||
te2_state_dict = (
|
||||
@@ -291,3 +229,100 @@ def _convert_kohya_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_
|
||||
|
||||
new_state_dict = {**unet_state_dict, **te_state_dict}
|
||||
return new_state_dict, network_alphas
|
||||
|
||||
|
||||
def _convert_unet_lora_key(key):
|
||||
"""
|
||||
Converts a U-Net LoRA key to a Diffusers compatible key.
|
||||
"""
|
||||
diffusers_name = key.replace("lora_unet_", "").replace("_", ".")
|
||||
|
||||
# Replace common U-Net naming patterns.
|
||||
diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
|
||||
diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
|
||||
diffusers_name = diffusers_name.replace("middle.block", "mid_block")
|
||||
diffusers_name = diffusers_name.replace("mid.block", "mid_block")
|
||||
diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
|
||||
diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
|
||||
diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
|
||||
diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
|
||||
diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
|
||||
diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
|
||||
diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
|
||||
diffusers_name = diffusers_name.replace("proj.in", "proj_in")
|
||||
diffusers_name = diffusers_name.replace("proj.out", "proj_out")
|
||||
diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")
|
||||
|
||||
# SDXL specific conversions.
|
||||
if "emb" in diffusers_name and "time.emb.proj" not in diffusers_name:
|
||||
pattern = r"\.\d+(?=\D*$)"
|
||||
diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
|
||||
if ".in." in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
|
||||
if ".out." in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
|
||||
if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("op", "conv")
|
||||
if "skip" in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")
|
||||
|
||||
# LyCORIS specific conversions.
|
||||
if "time.emb.proj" in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("time.emb.proj", "time_emb_proj")
|
||||
if "conv.shortcut" in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("conv.shortcut", "conv_shortcut")
|
||||
|
||||
# General conversions.
|
||||
if "transformer_blocks" in diffusers_name:
|
||||
if "attn1" in diffusers_name or "attn2" in diffusers_name:
|
||||
diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
|
||||
diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
|
||||
elif "ff" in diffusers_name:
|
||||
pass
|
||||
elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
|
||||
pass
|
||||
else:
|
||||
pass
|
||||
|
||||
return diffusers_name
|
||||
|
||||
|
||||
def _convert_text_encoder_lora_key(key, lora_name):
|
||||
"""
|
||||
Converts a text encoder LoRA key to a Diffusers compatible key.
|
||||
"""
|
||||
if lora_name.startswith(("lora_te_", "lora_te1_")):
|
||||
key_to_replace = "lora_te_" if lora_name.startswith("lora_te_") else "lora_te1_"
|
||||
else:
|
||||
key_to_replace = "lora_te2_"
|
||||
|
||||
diffusers_name = key.replace(key_to_replace, "").replace("_", ".")
|
||||
diffusers_name = diffusers_name.replace("text.model", "text_model")
|
||||
diffusers_name = diffusers_name.replace("self.attn", "self_attn")
|
||||
diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
|
||||
diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
|
||||
diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
|
||||
diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
|
||||
diffusers_name = diffusers_name.replace("text.projection", "text_projection")
|
||||
|
||||
if "self_attn" in diffusers_name or "text_projection" in diffusers_name:
|
||||
pass
|
||||
elif "mlp" in diffusers_name:
|
||||
# Be aware that this is the new diffusers convention and the rest of the code might
|
||||
# not utilize it yet.
|
||||
diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
|
||||
return diffusers_name
|
||||
|
||||
|
||||
def _get_alpha_name(lora_name_alpha, diffusers_name, alpha):
|
||||
"""
|
||||
Gets the correct alpha name for the Diffusers model.
|
||||
"""
|
||||
if lora_name_alpha.startswith("lora_unet_"):
|
||||
prefix = "unet."
|
||||
elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
|
||||
prefix = "text_encoder."
|
||||
else:
|
||||
prefix = "text_encoder_2."
|
||||
new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
|
||||
return {new_name: alpha}
|
||||
|
||||
Reference in New Issue
Block a user