mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Stable Diffusion image-to-image and inpaint using onnx. (#552)
* * Stabe Diffusion img2img using onnx. * * Stabe Diffusion inpaint using onnx. * Export vae_encoder, upgrade img2img, add test * updated inpainting pipeline + test * style Co-authored-by: anton-l <anton@huggingface.co>
This commit is contained in:
@@ -93,6 +93,7 @@ def convert_models(model_path: str, output_path: str, opset: int):
|
||||
},
|
||||
opset=opset,
|
||||
)
|
||||
del pipeline.text_encoder
|
||||
|
||||
# UNET
|
||||
unet_path = output_path / "unet" / "model.onnx"
|
||||
@@ -125,6 +126,7 @@ def convert_models(model_path: str, output_path: str, opset: int):
|
||||
location="weights.pb",
|
||||
convert_attribute=False,
|
||||
)
|
||||
del pipeline.unet
|
||||
|
||||
# VAE ENCODER
|
||||
vae_encoder = pipeline.vae
|
||||
@@ -157,6 +159,7 @@ def convert_models(model_path: str, output_path: str, opset: int):
|
||||
},
|
||||
opset=opset,
|
||||
)
|
||||
del pipeline.vae
|
||||
|
||||
# SAFETY CHECKER
|
||||
safety_checker = pipeline.safety_checker
|
||||
@@ -173,8 +176,10 @@ def convert_models(model_path: str, output_path: str, opset: int):
|
||||
},
|
||||
opset=opset,
|
||||
)
|
||||
del pipeline.safety_checker
|
||||
|
||||
onnx_pipeline = StableDiffusionOnnxPipeline(
|
||||
vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder"),
|
||||
vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder"),
|
||||
text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder"),
|
||||
tokenizer=pipeline.tokenizer,
|
||||
@@ -187,6 +192,8 @@ def convert_models(model_path: str, output_path: str, opset: int):
|
||||
onnx_pipeline.save_pretrained(output_path)
|
||||
print("ONNX pipeline saved to", output_path)
|
||||
|
||||
del pipeline
|
||||
del onnx_pipeline
|
||||
_ = StableDiffusionOnnxPipeline.from_pretrained(output_path, provider="CPUExecutionProvider")
|
||||
print("ONNX pipeline is loadable")
|
||||
|
||||
|
||||
@@ -58,7 +58,12 @@ else:
|
||||
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
|
||||
|
||||
if is_torch_available() and is_transformers_available() and is_onnx_available():
|
||||
from .pipelines import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline
|
||||
from .pipelines import (
|
||||
OnnxStableDiffusionImg2ImgPipeline,
|
||||
OnnxStableDiffusionInpaintPipeline,
|
||||
OnnxStableDiffusionPipeline,
|
||||
StableDiffusionOnnxPipeline,
|
||||
)
|
||||
else:
|
||||
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
|
||||
|
||||
|
||||
@@ -20,7 +20,12 @@ if is_torch_available() and is_transformers_available():
|
||||
)
|
||||
|
||||
if is_transformers_available() and is_onnx_available():
|
||||
from .stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline
|
||||
from .stable_diffusion import (
|
||||
OnnxStableDiffusionImg2ImgPipeline,
|
||||
OnnxStableDiffusionInpaintPipeline,
|
||||
OnnxStableDiffusionPipeline,
|
||||
StableDiffusionOnnxPipeline,
|
||||
)
|
||||
|
||||
if is_transformers_available() and is_flax_available():
|
||||
from .stable_diffusion import FlaxStableDiffusionPipeline
|
||||
|
||||
@@ -35,6 +35,8 @@ if is_transformers_available() and is_torch_available():
|
||||
|
||||
if is_transformers_available() and is_onnx_available():
|
||||
from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline
|
||||
from .pipeline_onnx_stable_diffusion_img2img import OnnxStableDiffusionImg2ImgPipeline
|
||||
from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline
|
||||
|
||||
if is_transformers_available() and is_flax_available():
|
||||
import flax
|
||||
|
||||
@@ -26,6 +26,7 @@ class OnnxStableDiffusionPipeline(DiffusionPipeline):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae_encoder: OnnxRuntimeModel,
|
||||
vae_decoder: OnnxRuntimeModel,
|
||||
text_encoder: OnnxRuntimeModel,
|
||||
tokenizer: CLIPTokenizer,
|
||||
@@ -36,6 +37,7 @@ class OnnxStableDiffusionPipeline(DiffusionPipeline):
|
||||
):
|
||||
super().__init__()
|
||||
self.register_modules(
|
||||
vae_encoder=vae_encoder,
|
||||
vae_decoder=vae_decoder,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
|
||||
@@ -0,0 +1,361 @@
|
||||
import inspect
|
||||
from typing import Callable, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
import PIL
|
||||
from transformers import CLIPFeatureExtractor, CLIPTokenizer
|
||||
|
||||
from ...configuration_utils import FrozenDict
|
||||
from ...onnx_utils import OnnxRuntimeModel
|
||||
from ...pipeline_utils import DiffusionPipeline
|
||||
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
||||
from ...utils import deprecate, logging
|
||||
from . import StableDiffusionPipelineOutput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
def preprocess(image):
|
||||
w, h = image.size
|
||||
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
||||
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = image[None].transpose(0, 3, 1, 2)
|
||||
return 2.0 * image - 1.0
|
||||
|
||||
|
||||
class OnnxStableDiffusionImg2ImgPipeline(DiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for text-guided image to image generation using Stable Diffusion.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||||
text_encoder ([`CLIPTextModel`]):
|
||||
Frozen text-encoder. Stable Diffusion uses the text portion of
|
||||
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
||||
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
||||
tokenizer (`CLIPTokenizer`):
|
||||
Tokenizer of class
|
||||
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
||||
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
||||
feature_extractor ([`CLIPFeatureExtractor`]):
|
||||
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
||||
"""
|
||||
vae_encoder: OnnxRuntimeModel
|
||||
vae_decoder: OnnxRuntimeModel
|
||||
text_encoder: OnnxRuntimeModel
|
||||
tokenizer: CLIPTokenizer
|
||||
unet: OnnxRuntimeModel
|
||||
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
|
||||
safety_checker: OnnxRuntimeModel
|
||||
feature_extractor: CLIPFeatureExtractor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae_encoder: OnnxRuntimeModel,
|
||||
vae_decoder: OnnxRuntimeModel,
|
||||
text_encoder: OnnxRuntimeModel,
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: OnnxRuntimeModel,
|
||||
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
||||
safety_checker: OnnxRuntimeModel,
|
||||
feature_extractor: CLIPFeatureExtractor,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
||||
deprecation_message = (
|
||||
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
||||
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
||||
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
||||
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
||||
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
||||
" file"
|
||||
)
|
||||
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
||||
new_config = dict(scheduler.config)
|
||||
new_config["steps_offset"] = 1
|
||||
scheduler._internal_dict = FrozenDict(new_config)
|
||||
|
||||
if safety_checker is None:
|
||||
logger.warning(
|
||||
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
||||
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
||||
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
||||
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
||||
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
||||
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
||||
)
|
||||
|
||||
self.register_modules(
|
||||
vae_encoder=vae_encoder,
|
||||
vae_decoder=vae_decoder,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
safety_checker=safety_checker,
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
init_image: Union[np.ndarray, PIL.Image.Image],
|
||||
strength: float = 0.8,
|
||||
num_inference_steps: Optional[int] = 50,
|
||||
guidance_scale: Optional[float] = 7.5,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
eta: Optional[float] = 0.0,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
|
||||
callback_steps: Optional[int] = 1,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`):
|
||||
The prompt or prompts to guide the image generation.
|
||||
init_image (`np.ndarray` or `PIL.Image.Image`):
|
||||
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
||||
process.
|
||||
strength (`float`, *optional*, defaults to 0.8):
|
||||
Conceptually, indicates how much to transform the reference `init_image`. Must be between 0 and 1.
|
||||
`init_image` will be used as a starting point, adding more noise to it the larger the `strength`. The
|
||||
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
|
||||
noise will be maximum and the denoising process will run for the full number of iterations specified in
|
||||
`num_inference_steps`. A value of 1, therefore, essentially ignores `init_image`.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference. This parameter will be modulated by `strength`.
|
||||
guidance_scale (`float`, *optional*, defaults to 7.5):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
||||
if `guidance_scale` is less than `1`).
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||||
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
||||
plain tuple.
|
||||
callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. The function will be
|
||||
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
|
||||
callback_steps (`int`, *optional*, defaults to 1):
|
||||
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
||||
called at every step.
|
||||
|
||||
Returns:
|
||||
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
||||
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
||||
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
||||
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
||||
(nsfw) content, according to the `safety_checker`.
|
||||
"""
|
||||
if isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if strength < 0 or strength > 1:
|
||||
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
||||
|
||||
if (callback_steps is None) or (
|
||||
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||||
f" {type(callback_steps)}."
|
||||
)
|
||||
|
||||
# set timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps)
|
||||
|
||||
if isinstance(init_image, PIL.Image.Image):
|
||||
init_image = preprocess(init_image)
|
||||
|
||||
# get prompt text embeddings
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
return_tensors="np",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
|
||||
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
||||
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
||||
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
||||
)
|
||||
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
||||
text_embeddings = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
|
||||
|
||||
# duplicate text embeddings for each generation per prompt
|
||||
text_embeddings = np.repeat(text_embeddings, num_images_per_prompt, axis=0)
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if do_classifier_free_guidance:
|
||||
uncond_tokens: List[str]
|
||||
if negative_prompt is None:
|
||||
uncond_tokens = [""]
|
||||
elif type(prompt) is not type(negative_prompt):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
elif isinstance(negative_prompt, str):
|
||||
uncond_tokens = [negative_prompt]
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError("The length of `negative_prompt` should be equal to batch_size.")
|
||||
else:
|
||||
uncond_tokens = negative_prompt
|
||||
|
||||
max_length = text_input_ids.shape[-1]
|
||||
uncond_input = self.tokenizer(
|
||||
uncond_tokens,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_tensors="np",
|
||||
)
|
||||
uncond_input_ids = uncond_input.input_ids
|
||||
uncond_embeddings = self.text_encoder(input_ids=uncond_input_ids.astype(np.int32))[0]
|
||||
|
||||
# duplicate unconditional embeddings for each generation per prompt
|
||||
uncond_embeddings = np.repeat(uncond_embeddings, batch_size * num_images_per_prompt, axis=0)
|
||||
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
|
||||
|
||||
# encode the init image into latents and scale the latents
|
||||
init_latents = self.vae_encoder(sample=init_image)[0]
|
||||
init_latents = 0.18215 * init_latents
|
||||
|
||||
if isinstance(prompt, str):
|
||||
prompt = [prompt]
|
||||
if len(prompt) > init_latents.shape[0] and len(prompt) % init_latents.shape[0] == 0:
|
||||
# expand init_latents for batch_size
|
||||
deprecation_message = (
|
||||
f"You have passed {len(prompt)} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
|
||||
" images (`init_image`). Initial images are now duplicating to match the number of text prompts. Note"
|
||||
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
|
||||
" your script to pass as many init images as text prompts to suppress this warning."
|
||||
)
|
||||
deprecate("len(prompt) != len(init_image)", "1.0.0", deprecation_message, standard_warn=False)
|
||||
additional_image_per_prompt = len(prompt) // init_latents.shape[0]
|
||||
init_latents = np.concatenate([init_latents] * additional_image_per_prompt * num_images_per_prompt, axis=0)
|
||||
elif len(prompt) > init_latents.shape[0] and len(prompt) % init_latents.shape[0] != 0:
|
||||
raise ValueError(
|
||||
f"Cannot duplicate `init_image` of batch size {init_latents.shape[0]} to {len(prompt)} text prompts."
|
||||
)
|
||||
else:
|
||||
init_latents = np.concatenate([init_latents] * num_images_per_prompt, axis=0)
|
||||
|
||||
# get the original timestep using init_timestep
|
||||
offset = self.scheduler.config.get("steps_offset", 0)
|
||||
init_timestep = int(num_inference_steps * strength) + offset
|
||||
init_timestep = min(init_timestep, num_inference_steps)
|
||||
|
||||
timesteps = self.scheduler.timesteps[-init_timestep]
|
||||
timesteps = torch.tensor([timesteps] * batch_size * num_images_per_prompt, device=self.device)
|
||||
|
||||
# add noise to latents using the timesteps
|
||||
noise = np.random.randn(*init_latents.shape).astype(np.float32)
|
||||
init_latents = self.scheduler.add_noise(torch.from_numpy(init_latents), torch.from_numpy(noise), timesteps)
|
||||
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
latents = init_latents
|
||||
|
||||
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
||||
|
||||
# Some schedulers like PNDM have timesteps as arrays
|
||||
# It's more optimized to move all timesteps to correct device beforehand
|
||||
timesteps = self.scheduler.timesteps[t_start:].to(self.device)
|
||||
|
||||
for i, t in enumerate(self.progress_bar(timesteps)):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
sample=latent_model_input, timestep=np.array([t]), encoder_hidden_states=text_embeddings
|
||||
)[0]
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
||||
latents = latents.numpy()
|
||||
|
||||
# call the callback, if provided
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
callback(i, t, latents)
|
||||
|
||||
latents = 1 / 0.18215 * latents
|
||||
image = self.vae_decoder(latent_sample=latents)[0]
|
||||
|
||||
image = np.clip(image / 2 + 0.5, 0, 1)
|
||||
image = image.transpose((0, 2, 3, 1))
|
||||
|
||||
if self.safety_checker is not None:
|
||||
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="np")
|
||||
image, has_nsfw_concept = self.safety_checker(clip_input=safety_checker_input.pixel_values, images=image)
|
||||
else:
|
||||
has_nsfw_concept = None
|
||||
|
||||
if output_type == "pil":
|
||||
image = self.numpy_to_pil(image)
|
||||
|
||||
if not return_dict:
|
||||
return (image, has_nsfw_concept)
|
||||
|
||||
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
||||
@@ -0,0 +1,385 @@
|
||||
import inspect
|
||||
from typing import Callable, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
import PIL
|
||||
from tqdm.auto import tqdm
|
||||
from transformers import CLIPFeatureExtractor, CLIPTokenizer
|
||||
|
||||
from ...configuration_utils import FrozenDict
|
||||
from ...onnx_utils import OnnxRuntimeModel
|
||||
from ...pipeline_utils import DiffusionPipeline
|
||||
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
||||
from ...utils import deprecate, logging
|
||||
from . import StableDiffusionPipelineOutput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def preprocess_image(image):
|
||||
w, h = image.size
|
||||
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
||||
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = image[None].transpose(0, 3, 1, 2)
|
||||
return 2.0 * image - 1.0
|
||||
|
||||
|
||||
def preprocess_mask(mask):
|
||||
mask = mask.convert("L")
|
||||
w, h = mask.size
|
||||
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
||||
mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
|
||||
mask = np.array(mask).astype(np.float32) / 255.0
|
||||
mask = np.tile(mask, (4, 1, 1))
|
||||
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
|
||||
mask = 1 - mask # repaint white, keep black
|
||||
return mask
|
||||
|
||||
|
||||
class OnnxStableDiffusionInpaintPipeline(DiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for text-guided image inpainting using Stable Diffusion. *This is an experimental feature*.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||||
text_encoder ([`CLIPTextModel`]):
|
||||
Frozen text-encoder. Stable Diffusion uses the text portion of
|
||||
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
||||
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
||||
tokenizer (`CLIPTokenizer`):
|
||||
Tokenizer of class
|
||||
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
||||
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
||||
feature_extractor ([`CLIPFeatureExtractor`]):
|
||||
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
||||
"""
|
||||
vae_encoder: OnnxRuntimeModel
|
||||
vae_decoder: OnnxRuntimeModel
|
||||
text_encoder: OnnxRuntimeModel
|
||||
tokenizer: CLIPTokenizer
|
||||
unet: OnnxRuntimeModel
|
||||
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
|
||||
safety_checker: OnnxRuntimeModel
|
||||
feature_extractor: CLIPFeatureExtractor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae_encoder: OnnxRuntimeModel,
|
||||
vae_decoder: OnnxRuntimeModel,
|
||||
text_encoder: OnnxRuntimeModel,
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: OnnxRuntimeModel,
|
||||
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
||||
safety_checker: OnnxRuntimeModel,
|
||||
feature_extractor: CLIPFeatureExtractor,
|
||||
):
|
||||
super().__init__()
|
||||
logger.info("`OnnxStableDiffusionInpaintPipeline` is experimental and will very likely change in the future.")
|
||||
|
||||
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
||||
deprecation_message = (
|
||||
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
||||
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
||||
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
||||
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
||||
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
||||
" file"
|
||||
)
|
||||
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
||||
new_config = dict(scheduler.config)
|
||||
new_config["steps_offset"] = 1
|
||||
scheduler._internal_dict = FrozenDict(new_config)
|
||||
|
||||
if safety_checker is None:
|
||||
logger.warning(
|
||||
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
||||
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
||||
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
||||
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
||||
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
||||
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
||||
)
|
||||
|
||||
self.register_modules(
|
||||
vae_encoder=vae_encoder,
|
||||
vae_decoder=vae_decoder,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
safety_checker=safety_checker,
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
init_image: Union[np.ndarray, PIL.Image.Image],
|
||||
mask_image: Union[np.ndarray, PIL.Image.Image],
|
||||
strength: float = 0.8,
|
||||
num_inference_steps: Optional[int] = 50,
|
||||
guidance_scale: Optional[float] = 7.5,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
eta: Optional[float] = 0.0,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
|
||||
callback_steps: Optional[int] = 1,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`):
|
||||
The prompt or prompts to guide the image generation.
|
||||
init_image (`np.ndarray` or `PIL.Image.Image`):
|
||||
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
||||
process. This is the image whose masked region will be inpainted.
|
||||
mask_image (`np.ndarray` or `PIL.Image.Image`):
|
||||
`Image`, or tensor representing an image batch, to mask `init_image`. White pixels in the mask will be
|
||||
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
|
||||
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
|
||||
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
||||
strength (`float`, *optional*, defaults to 0.8):
|
||||
Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
|
||||
is 1, the denoising process will be run on the masked area for the full number of iterations specified
|
||||
in `num_inference_steps`. `init_image` will be used as a reference for the masked area, adding more
|
||||
noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
|
||||
the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
|
||||
guidance_scale (`float`, *optional*, defaults to 7.5):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
||||
if `guidance_scale` is less than `1`).
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||||
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
||||
plain tuple.
|
||||
callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. The function will be
|
||||
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
|
||||
callback_steps (`int`, *optional*, defaults to 1):
|
||||
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
||||
called at every step.
|
||||
|
||||
Returns:
|
||||
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
||||
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
||||
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
||||
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
||||
(nsfw) content, according to the `safety_checker`.
|
||||
"""
|
||||
if isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if strength < 0 or strength > 1:
|
||||
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
||||
|
||||
if (callback_steps is None) or (
|
||||
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||||
f" {type(callback_steps)}."
|
||||
)
|
||||
|
||||
# set timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps)
|
||||
|
||||
# get prompt text embeddings
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
return_tensors="np",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
|
||||
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
||||
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
||||
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
||||
)
|
||||
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
||||
text_embeddings = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
|
||||
|
||||
# duplicate text embeddings for each generation per prompt
|
||||
text_embeddings = np.repeat(text_embeddings, num_images_per_prompt, axis=0)
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if do_classifier_free_guidance:
|
||||
uncond_tokens: List[str]
|
||||
if negative_prompt is None:
|
||||
uncond_tokens = [""]
|
||||
elif type(prompt) is not type(negative_prompt):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
elif isinstance(negative_prompt, str):
|
||||
uncond_tokens = [negative_prompt]
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
else:
|
||||
uncond_tokens = negative_prompt
|
||||
|
||||
max_length = text_input_ids.shape[-1]
|
||||
uncond_input = self.tokenizer(
|
||||
uncond_tokens,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_tensors="np",
|
||||
)
|
||||
uncond_input_ids = uncond_input.input_ids
|
||||
uncond_embeddings = self.text_encoder(input_ids=uncond_input_ids.astype(np.int32))[0]
|
||||
|
||||
# duplicate unconditional embeddings for each generation per prompt
|
||||
uncond_embeddings = np.repeat(uncond_embeddings, batch_size * num_images_per_prompt, axis=0)
|
||||
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
|
||||
|
||||
# preprocess image
|
||||
if not isinstance(init_image, torch.FloatTensor):
|
||||
init_image = preprocess_image(init_image)
|
||||
|
||||
# encode the init image into latents and scale the latents
|
||||
init_latents = self.vae_encoder(sample=init_image)[0]
|
||||
init_latents = 0.18215 * init_latents
|
||||
|
||||
# Expand init_latents for batch_size and num_images_per_prompt
|
||||
init_latents = np.concatenate([init_latents] * batch_size * num_images_per_prompt, axis=0)
|
||||
init_latents_orig = init_latents
|
||||
|
||||
# preprocess mask
|
||||
if not isinstance(mask_image, np.ndarray):
|
||||
mask_image = preprocess_mask(mask_image)
|
||||
mask = np.concatenate([mask_image] * batch_size * num_images_per_prompt)
|
||||
|
||||
# check sizes
|
||||
if not mask.shape == init_latents.shape:
|
||||
raise ValueError("The mask and init_image should be the same size!")
|
||||
|
||||
# get the original timestep using init_timestep
|
||||
offset = self.scheduler.config.get("steps_offset", 0)
|
||||
init_timestep = int(num_inference_steps * strength) + offset
|
||||
init_timestep = min(init_timestep, num_inference_steps)
|
||||
|
||||
timesteps = self.scheduler.timesteps[-init_timestep]
|
||||
timesteps = torch.tensor([timesteps] * batch_size * num_images_per_prompt, device=self.device)
|
||||
|
||||
# add noise to latents using the timesteps
|
||||
noise = np.random.randn(*init_latents.shape).astype(np.float32)
|
||||
init_latents = self.scheduler.add_noise(torch.from_numpy(init_latents), torch.from_numpy(noise), timesteps)
|
||||
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
latents = init_latents
|
||||
|
||||
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
||||
|
||||
# Some schedulers like PNDM have timesteps as arrays
|
||||
# It's more optimized to move all timesteps to correct device beforehand
|
||||
timesteps = self.scheduler.timesteps[t_start:].to(self.device)
|
||||
|
||||
for i, t in tqdm(enumerate(timesteps)):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
sample=latent_model_input, timestep=np.array([t]), encoder_hidden_states=text_embeddings
|
||||
)[0]
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
||||
latents = latents.numpy()
|
||||
# masking
|
||||
init_latents_proper = self.scheduler.add_noise(
|
||||
torch.from_numpy(init_latents_orig), torch.from_numpy(noise), torch.tensor([t])
|
||||
)
|
||||
|
||||
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
||||
|
||||
# call the callback, if provided
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
callback(i, t, latents)
|
||||
|
||||
latents = 1 / 0.18215 * latents
|
||||
image = self.vae_decoder(latent_sample=latents)[0]
|
||||
|
||||
image = np.clip(image / 2 + 0.5, 0, 1)
|
||||
image = image.transpose((0, 2, 3, 1))
|
||||
|
||||
if self.safety_checker is not None:
|
||||
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="np")
|
||||
image, has_nsfw_concept = self.safety_checker(clip_input=safety_checker_input.pixel_values, images=image)
|
||||
else:
|
||||
has_nsfw_concept = None
|
||||
|
||||
if output_type == "pil":
|
||||
image = self.numpy_to_pil(image)
|
||||
|
||||
if not return_dict:
|
||||
return (image, has_nsfw_concept)
|
||||
|
||||
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
||||
@@ -37,6 +37,8 @@ from diffusers import (
|
||||
LDMPipeline,
|
||||
LDMTextToImagePipeline,
|
||||
LMSDiscreteScheduler,
|
||||
OnnxStableDiffusionImg2ImgPipeline,
|
||||
OnnxStableDiffusionInpaintPipeline,
|
||||
OnnxStableDiffusionPipeline,
|
||||
PNDMPipeline,
|
||||
PNDMScheduler,
|
||||
@@ -2025,6 +2027,72 @@ class PipelineTesterMixin(unittest.TestCase):
|
||||
expected_slice = np.array([0.3602, 0.3688, 0.3652, 0.3895, 0.3782, 0.3747, 0.3927, 0.4241, 0.4327])
|
||||
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
||||
|
||||
@slow
|
||||
def test_stable_diffusion_img2img_onnx(self):
|
||||
init_image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
||||
"/img2img/sketch-mountains-input.jpg"
|
||||
)
|
||||
init_image = init_image.resize((768, 512))
|
||||
|
||||
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
|
||||
"CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
|
||||
)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
prompt = "A fantasy landscape, trending on artstation"
|
||||
|
||||
np.random.seed(0)
|
||||
output = pipe(
|
||||
prompt=prompt,
|
||||
init_image=init_image,
|
||||
strength=0.75,
|
||||
guidance_scale=7.5,
|
||||
num_inference_steps=8,
|
||||
output_type="np",
|
||||
)
|
||||
images = output.images
|
||||
image_slice = images[0, 255:258, 383:386, -1]
|
||||
|
||||
assert images.shape == (1, 512, 768, 3)
|
||||
expected_slice = np.array([[0.4806, 0.5125, 0.5453, 0.4846, 0.4984, 0.4955, 0.4830, 0.4962, 0.4969]])
|
||||
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
||||
|
||||
@slow
|
||||
def test_stable_diffusion_inpaint_onnx(self):
|
||||
init_image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
||||
"/in_paint/overture-creations-5sI6fQgYIuo.png"
|
||||
)
|
||||
mask_image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
||||
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
|
||||
)
|
||||
|
||||
pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained(
|
||||
"CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
|
||||
)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
prompt = "A red cat sitting on a park bench"
|
||||
|
||||
np.random.seed(0)
|
||||
output = pipe(
|
||||
prompt=prompt,
|
||||
init_image=init_image,
|
||||
mask_image=mask_image,
|
||||
strength=0.75,
|
||||
guidance_scale=7.5,
|
||||
num_inference_steps=8,
|
||||
output_type="np",
|
||||
)
|
||||
images = output.images
|
||||
image_slice = images[0, 255:258, 255:258, -1]
|
||||
|
||||
assert images.shape == (1, 512, 512, 3)
|
||||
expected_slice = np.array([0.3524, 0.3289, 0.3464, 0.3872, 0.4129, 0.3566, 0.3709, 0.4128, 0.3734])
|
||||
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
||||
|
||||
@slow
|
||||
@unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
|
||||
def test_stable_diffusion_text2img_intermediate_state(self):
|
||||
|
||||
Reference in New Issue
Block a user