mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[PixArt-Alpha] fix mask_feature so that precomputed embeddings work with a batch size > 1 (#5677)
* fix embeds * remove todo * add: test * better name
This commit is contained in:
@@ -253,7 +253,7 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
||||
negative_prompt_embeds = None
|
||||
|
||||
# Perform additional masking.
|
||||
if mask_feature:
|
||||
if mask_feature and prompt_embeds is None and negative_prompt_embeds is None:
|
||||
prompt_embeds = prompt_embeds.unsqueeze(1)
|
||||
masked_prompt_embeds, keep_indices = self.mask_text_embeddings(prompt_embeds, prompt_embeds_attention_mask)
|
||||
masked_prompt_embeds = masked_prompt_embeds.squeeze(1)
|
||||
|
||||
@@ -181,11 +181,76 @@ class PixArtAlphaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
|
||||
self.assertLessEqual(max_diff, 1e-3)
|
||||
|
||||
def test_inference_with_embeddings_and_multiple_images(self):
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
prompt = inputs["prompt"]
|
||||
generator = inputs["generator"]
|
||||
num_inference_steps = inputs["num_inference_steps"]
|
||||
output_type = inputs["output_type"]
|
||||
|
||||
prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(prompt)
|
||||
|
||||
# inputs with prompt converted to embeddings
|
||||
inputs = {
|
||||
"prompt_embeds": prompt_embeds,
|
||||
"negative_prompt": None,
|
||||
"negative_prompt_embeds": negative_prompt_embeds,
|
||||
"generator": generator,
|
||||
"num_inference_steps": num_inference_steps,
|
||||
"output_type": output_type,
|
||||
"num_images_per_prompt": 2,
|
||||
}
|
||||
|
||||
# set all optional components to None
|
||||
for optional_component in pipe._optional_components:
|
||||
setattr(pipe, optional_component, None)
|
||||
|
||||
output = pipe(**inputs)[0]
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
pipe.save_pretrained(tmpdir)
|
||||
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
||||
pipe_loaded.to(torch_device)
|
||||
pipe_loaded.set_progress_bar_config(disable=None)
|
||||
|
||||
for optional_component in pipe._optional_components:
|
||||
self.assertTrue(
|
||||
getattr(pipe_loaded, optional_component) is None,
|
||||
f"`{optional_component}` did not stay set to None after loading.",
|
||||
)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
generator = inputs["generator"]
|
||||
num_inference_steps = inputs["num_inference_steps"]
|
||||
output_type = inputs["output_type"]
|
||||
|
||||
# inputs with prompt converted to embeddings
|
||||
inputs = {
|
||||
"prompt_embeds": prompt_embeds,
|
||||
"negative_prompt": None,
|
||||
"negative_prompt_embeds": negative_prompt_embeds,
|
||||
"generator": generator,
|
||||
"num_inference_steps": num_inference_steps,
|
||||
"output_type": output_type,
|
||||
"num_images_per_prompt": 2,
|
||||
}
|
||||
|
||||
output_loaded = pipe_loaded(**inputs)[0]
|
||||
|
||||
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
|
||||
self.assertLess(max_diff, 1e-4)
|
||||
|
||||
def test_inference_batch_single_identical(self):
|
||||
self._test_inference_batch_single_identical(expected_max_diff=1e-3)
|
||||
|
||||
|
||||
# TODO: needs to be updated.
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
class PixArtAlphaPipelineIntegrationTests(unittest.TestCase):
|
||||
|
||||
Reference in New Issue
Block a user