1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

add tests

This commit is contained in:
yiyixuxu
2026-01-21 13:55:38 +01:00
parent eb221d5bc1
commit a81893c407
3 changed files with 183 additions and 1 deletions

View File

@@ -514,7 +514,7 @@ class Flux2KleinBaseTextEncoderStep(ModularPipelineBlocks):
)
if components.requires_unconditional_embeds:
negative_prompt = ""
negative_prompt = [""] * len(prompt)
block_state.negative_prompt_embeds = self._get_qwen3_prompt_embeds(
text_encoder=components.text_encoder,
tokenizer=components.tokenizer,

View File

@@ -0,0 +1,91 @@
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import numpy as np
import PIL
import pytest
from diffusers.modular_pipelines import (
Flux2KleinAutoBlocks,
Flux2KleinModularPipeline,
)
from ...testing_utils import floats_tensor, torch_device
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
class TestFlux2ModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = Flux2KleinModularPipeline
pipeline_blocks_class = Flux2KleinAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-modular"
params = frozenset(["prompt", "height", "width"])
batch_params = frozenset(["prompt"])
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
"text_encoder_out_layers": (1,),
"generator": generator,
"num_inference_steps": 2,
"height": 32,
"width": 32,
"output_type": "pt",
}
return inputs
def test_float16_inference(self):
super().test_float16_inference(9e-2)
class TestFlux2ImageConditionedModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = Flux2KleinModularPipeline
pipeline_blocks_class = Flux2KleinAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-modular"
params = frozenset(["prompt", "height", "width", "image"])
batch_params = frozenset(["prompt", "image"])
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
"text_encoder_out_layers": (1,),
"generator": generator,
"num_inference_steps": 2,
"height": 32,
"width": 32,
"output_type": "pt",
}
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(torch_device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = PIL.Image.fromarray(np.uint8(image * 255)).convert("RGB")
inputs["image"] = init_image
return inputs
def test_float16_inference(self):
super().test_float16_inference(9e-2)
@pytest.mark.skip(reason="batched inference is currently not supported")
def test_inference_batch_single_identical(self, batch_size=2, expected_max_diff=0.0001):
return

View File

@@ -0,0 +1,91 @@
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import numpy as np
import PIL
import pytest
from diffusers.modular_pipelines import (
Flux2KleinBaseAutoBlocks,
Flux2KleinModularPipeline,
)
from ...testing_utils import floats_tensor, torch_device
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
class TestFlux2ModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = Flux2KleinModularPipeline
pipeline_blocks_class = Flux2KleinBaseAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-base-modular"
params = frozenset(["prompt", "height", "width"])
batch_params = frozenset(["prompt"])
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
"text_encoder_out_layers": (1,),
"generator": generator,
"num_inference_steps": 2,
"height": 32,
"width": 32,
"output_type": "pt",
}
return inputs
def test_float16_inference(self):
super().test_float16_inference(9e-2)
class TestFlux2ImageConditionedModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = Flux2KleinModularPipeline
pipeline_blocks_class = Flux2KleinBaseAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-base-modular"
params = frozenset(["prompt", "height", "width", "image"])
batch_params = frozenset(["prompt", "image"])
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
"text_encoder_out_layers": (1,),
"generator": generator,
"num_inference_steps": 2,
"height": 32,
"width": 32,
"output_type": "pt",
}
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(torch_device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = PIL.Image.fromarray(np.uint8(image * 255)).convert("RGB")
inputs["image"] = init_image
return inputs
def test_float16_inference(self):
super().test_float16_inference(9e-2)
@pytest.mark.skip(reason="batched inference is currently not supported")
def test_inference_batch_single_identical(self, batch_size=2, expected_max_diff=0.0001):
return