mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[refactor] Making the xformers mem-efficient attention activation recursive (#1493)
* Moving the mem efficiient attention activation to the top + recursive * black, too bad there's no pre-commit ? Co-authored-by: Benjamin Lefaudeux <benjamin@photoroom.com>
This commit is contained in:
committed by
GitHub
parent
f21415d1d9
commit
a816a87a09
@@ -488,24 +488,6 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
||||
r"""
|
||||
Enable sliced attention computation.
|
||||
|
||||
@@ -106,24 +106,6 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||
sampling = getattr(library, "sampling")
|
||||
self.sampler = getattr(sampling, scheduler_type)
|
||||
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
||||
r"""
|
||||
Enable sliced attention computation.
|
||||
|
||||
@@ -183,24 +183,6 @@ class TextInpainting(DiffusionPipeline):
|
||||
return torch.device(module._hf_hook.execution_device)
|
||||
return self.device
|
||||
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
|
||||
@@ -246,10 +246,6 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
|
||||
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
|
||||
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
for block in self.transformer_blocks:
|
||||
block._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
"""
|
||||
@@ -414,7 +410,7 @@ class BasicTransformerBlock(nn.Module):
|
||||
# if xformers is installed try to use memory_efficient_attention by default
|
||||
if is_xformers_available():
|
||||
try:
|
||||
self._set_use_memory_efficient_attention_xformers(True)
|
||||
self.set_use_memory_efficient_attention_xformers(True)
|
||||
except Exception as e:
|
||||
warnings.warn(
|
||||
"Could not enable memory efficient attention. Make sure xformers is installed"
|
||||
@@ -425,7 +421,7 @@ class BasicTransformerBlock(nn.Module):
|
||||
self.attn1._slice_size = slice_size
|
||||
self.attn2._slice_size = slice_size
|
||||
|
||||
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
if not is_xformers_available():
|
||||
print("Here is how to install it")
|
||||
raise ModuleNotFoundError(
|
||||
@@ -835,11 +831,3 @@ class DualTransformer2DModel(nn.Module):
|
||||
return (output_states,)
|
||||
|
||||
return Transformer2DModelOutput(sample=output_states)
|
||||
|
||||
def _set_attention_slice(self, slice_size):
|
||||
for transformer in self.transformers:
|
||||
transformer._set_attention_slice(slice_size)
|
||||
|
||||
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
for transformer in self.transformers:
|
||||
transformer._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
@@ -418,10 +418,6 @@ class UNetMidBlock2DCrossAttn(nn.Module):
|
||||
for attn in self.attentions:
|
||||
attn._set_attention_slice(slice_size)
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
for attn in self.attentions:
|
||||
attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
||||
hidden_states = self.resnets[0](hidden_states, temb)
|
||||
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
||||
@@ -616,10 +612,6 @@ class CrossAttnDownBlock2D(nn.Module):
|
||||
for attn in self.attentions:
|
||||
attn._set_attention_slice(slice_size)
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
for attn in self.attentions:
|
||||
attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
||||
output_states = ()
|
||||
|
||||
@@ -1217,10 +1209,6 @@ class CrossAttnUpBlock2D(nn.Module):
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
for attn in self.attentions:
|
||||
attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
|
||||
@@ -252,17 +252,6 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
||||
if hasattr(block, "attentions") and block.attentions is not None:
|
||||
block.set_attention_slice(slice_size)
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
for block in self.down_blocks:
|
||||
if hasattr(block, "attentions") and block.attentions is not None:
|
||||
block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
self.mid_block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
for block in self.up_blocks:
|
||||
if hasattr(block, "attentions") and block.attentions is not None:
|
||||
block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
@@ -789,3 +789,38 @@ class DiffusionPipeline(ConfigMixin):
|
||||
|
||||
def set_progress_bar_config(self, **kwargs):
|
||||
self._progress_bar_config = kwargs
|
||||
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, valid: bool) -> None:
|
||||
# Recursively walk through all the children.
|
||||
# Any children which exposes the set_use_memory_efficient_attention_xformers method
|
||||
# gets the message
|
||||
def fn_recursive_set_mem_eff(module: torch.nn.Module):
|
||||
if hasattr(module, "set_use_memory_efficient_attention_xformers"):
|
||||
module.set_use_memory_efficient_attention_xformers(valid)
|
||||
|
||||
for child in module.children():
|
||||
fn_recursive_set_mem_eff(child)
|
||||
|
||||
module_names, _, _ = self.extract_init_dict(dict(self.config))
|
||||
for module_name in module_names:
|
||||
module = getattr(self, module_name)
|
||||
if isinstance(module, torch.nn.Module):
|
||||
fn_recursive_set_mem_eff(module)
|
||||
|
||||
@@ -166,24 +166,6 @@ class AltDiffusionPipeline(DiffusionPipeline):
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
||||
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
||||
r"""
|
||||
Enable sliced attention computation.
|
||||
|
||||
@@ -251,24 +251,6 @@ class AltDiffusionImg2ImgPipeline(DiffusionPipeline):
|
||||
return torch.device(module._hf_hook.execution_device)
|
||||
return self.device
|
||||
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
@@ -285,26 +285,6 @@ class CycleDiffusionPipeline(DiffusionPipeline):
|
||||
return torch.device(module._hf_hook.execution_device)
|
||||
return self.device
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_xformers_memory_efficient_attention
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_xformers_memory_efficient_attention
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
||||
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
|
||||
r"""
|
||||
|
||||
@@ -165,24 +165,6 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
||||
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
||||
r"""
|
||||
Enable sliced attention computation.
|
||||
|
||||
@@ -134,26 +134,6 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline):
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_xformers_memory_efficient_attention
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_xformers_memory_efficient_attention
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_attention_slicing
|
||||
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
||||
r"""
|
||||
|
||||
@@ -254,26 +254,6 @@ class StableDiffusionImg2ImgPipeline(DiffusionPipeline):
|
||||
return torch.device(module._hf_hook.execution_device)
|
||||
return self.device
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_xformers_memory_efficient_attention
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_xformers_memory_efficient_attention
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
||||
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
|
||||
r"""
|
||||
|
||||
@@ -300,26 +300,6 @@ class StableDiffusionInpaintPipeline(DiffusionPipeline):
|
||||
# fix by only offloading self.safety_checker for now
|
||||
cpu_offload(self.safety_checker.vision_model, device)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_xformers_memory_efficient_attention
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_xformers_memory_efficient_attention
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
@property
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
||||
def _execution_device(self):
|
||||
|
||||
@@ -248,26 +248,6 @@ class StableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
|
||||
# fix by only offloading self.safety_checker for now
|
||||
cpu_offload(self.safety_checker.vision_model, device)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_xformers_memory_efficient_attention
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_xformers_memory_efficient_attention
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
@property
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
||||
def _execution_device(self):
|
||||
|
||||
@@ -143,26 +143,6 @@ class StableDiffusionUpscalePipeline(DiffusionPipeline):
|
||||
if cpu_offloaded_model is not None:
|
||||
cpu_offload(cpu_offloaded_model, device)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_xformers_memory_efficient_attention
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_xformers_memory_efficient_attention
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
@property
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
||||
def _execution_device(self):
|
||||
|
||||
@@ -182,24 +182,6 @@ class StableDiffusionPipelineSafe(DiffusionPipeline):
|
||||
"""
|
||||
self._safety_text_concept = concept
|
||||
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
||||
r"""
|
||||
Enable sliced attention computation.
|
||||
|
||||
@@ -330,17 +330,6 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
||||
if hasattr(block, "attentions") and block.attentions is not None:
|
||||
block.set_attention_slice(slice_size)
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
for block in self.down_blocks:
|
||||
if hasattr(block, "attentions") and block.attentions is not None:
|
||||
block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
self.mid_block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
for block in self.up_blocks:
|
||||
if hasattr(block, "attentions") and block.attentions is not None:
|
||||
block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if isinstance(module, (CrossAttnDownBlockFlat, DownBlockFlat, CrossAttnUpBlockFlat, UpBlockFlat)):
|
||||
module.gradient_checkpointing = value
|
||||
@@ -761,10 +750,6 @@ class CrossAttnDownBlockFlat(nn.Module):
|
||||
for attn in self.attentions:
|
||||
attn._set_attention_slice(slice_size)
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
for attn in self.attentions:
|
||||
attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
||||
output_states = ()
|
||||
|
||||
@@ -976,10 +961,6 @@ class CrossAttnUpBlockFlat(nn.Module):
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
for attn in self.attentions:
|
||||
attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
@@ -1122,10 +1103,6 @@ class UNetMidBlockFlatCrossAttn(nn.Module):
|
||||
for attn in self.attentions:
|
||||
attn._set_attention_slice(slice_size)
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
for attn in self.attentions:
|
||||
attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
||||
hidden_states = self.resnets[0](hidden_states, temb)
|
||||
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
||||
|
||||
@@ -147,26 +147,6 @@ class VersatileDiffusionDualGuidedPipeline(DiffusionPipeline):
|
||||
|
||||
self.image_unet.register_to_config(dual_cross_attention=False)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_xformers_memory_efficient_attention with unet->image_unet
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.image_unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_xformers_memory_efficient_attention with unet->image_unet
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.image_unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_attention_slicing with unet->image_unet
|
||||
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
||||
r"""
|
||||
|
||||
@@ -73,26 +73,6 @@ class VersatileDiffusionImageVariationPipeline(DiffusionPipeline):
|
||||
)
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_xformers_memory_efficient_attention with unet->image_unet
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.image_unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_xformers_memory_efficient_attention with unet->image_unet
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.image_unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_attention_slicing with unet->image_unet
|
||||
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
||||
r"""
|
||||
|
||||
@@ -98,26 +98,6 @@ class VersatileDiffusionTextToImagePipeline(DiffusionPipeline):
|
||||
def remove_unused_weights(self):
|
||||
self.register_modules(text_unet=None)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_xformers_memory_efficient_attention with unet->image_unet
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.image_unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_xformers_memory_efficient_attention with unet->image_unet
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.image_unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_attention_slicing with unet->image_unet
|
||||
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
||||
r"""
|
||||
|
||||
Reference in New Issue
Block a user