mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
enable test_layerwise_casting_memory cases on XPU (#11406)
* enable test_layerwise_casting_memory cases on XPU Signed-off-by: Yao Matrix <matrix.yao@intel.com> * fix style Signed-off-by: Yao Matrix <matrix.yao@intel.com> --------- Signed-off-by: Yao Matrix <matrix.yao@intel.com>
This commit is contained in:
@@ -1186,6 +1186,13 @@ if is_torch_available():
|
||||
"mps": 0,
|
||||
"default": 0,
|
||||
}
|
||||
BACKEND_SYNCHRONIZE = {
|
||||
"cuda": torch.cuda.synchronize,
|
||||
"xpu": getattr(torch.xpu, "synchronize", None),
|
||||
"cpu": None,
|
||||
"mps": None,
|
||||
"default": None,
|
||||
}
|
||||
|
||||
|
||||
# This dispatches a defined function according to the accelerator from the function definitions.
|
||||
@@ -1208,6 +1215,10 @@ def backend_manual_seed(device: str, seed: int):
|
||||
return _device_agnostic_dispatch(device, BACKEND_MANUAL_SEED, seed)
|
||||
|
||||
|
||||
def backend_synchronize(device: str):
|
||||
return _device_agnostic_dispatch(device, BACKEND_SYNCHRONIZE)
|
||||
|
||||
|
||||
def backend_empty_cache(device: str):
|
||||
return _device_agnostic_dispatch(device, BACKEND_EMPTY_CACHE)
|
||||
|
||||
|
||||
@@ -59,6 +59,9 @@ from diffusers.utils.hub_utils import _add_variant
|
||||
from diffusers.utils.testing_utils import (
|
||||
CaptureLogger,
|
||||
backend_empty_cache,
|
||||
backend_max_memory_allocated,
|
||||
backend_reset_peak_memory_stats,
|
||||
backend_synchronize,
|
||||
floats_tensor,
|
||||
get_python_version,
|
||||
is_torch_compile,
|
||||
@@ -68,7 +71,6 @@ from diffusers.utils.testing_utils import (
|
||||
require_torch_2,
|
||||
require_torch_accelerator,
|
||||
require_torch_accelerator_with_training,
|
||||
require_torch_gpu,
|
||||
require_torch_multi_accelerator,
|
||||
run_test_in_subprocess,
|
||||
slow,
|
||||
@@ -341,7 +343,7 @@ class ModelUtilsTest(unittest.TestCase):
|
||||
|
||||
assert model.config.in_channels == 9
|
||||
|
||||
@require_torch_gpu
|
||||
@require_torch_accelerator
|
||||
def test_keep_modules_in_fp32(self):
|
||||
r"""
|
||||
A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32 when we load the model in fp16/bf16
|
||||
@@ -1480,16 +1482,16 @@ class ModelTesterMixin:
|
||||
test_layerwise_casting(torch.float8_e5m2, torch.float32)
|
||||
test_layerwise_casting(torch.float8_e4m3fn, torch.bfloat16)
|
||||
|
||||
@require_torch_gpu
|
||||
@require_torch_accelerator
|
||||
def test_layerwise_casting_memory(self):
|
||||
MB_TOLERANCE = 0.2
|
||||
LEAST_COMPUTE_CAPABILITY = 8.0
|
||||
|
||||
def reset_memory_stats():
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
backend_synchronize(torch_device)
|
||||
backend_empty_cache(torch_device)
|
||||
backend_reset_peak_memory_stats(torch_device)
|
||||
|
||||
def get_memory_usage(storage_dtype, compute_dtype):
|
||||
torch.manual_seed(0)
|
||||
@@ -1502,7 +1504,7 @@ class ModelTesterMixin:
|
||||
reset_memory_stats()
|
||||
model(**inputs_dict)
|
||||
model_memory_footprint = model.get_memory_footprint()
|
||||
peak_inference_memory_allocated_mb = torch.cuda.max_memory_allocated() / 1024**2
|
||||
peak_inference_memory_allocated_mb = backend_max_memory_allocated(torch_device) / 1024**2
|
||||
|
||||
return model_memory_footprint, peak_inference_memory_allocated_mb
|
||||
|
||||
@@ -1512,7 +1514,7 @@ class ModelTesterMixin:
|
||||
torch.float8_e4m3fn, torch.bfloat16
|
||||
)
|
||||
|
||||
compute_capability = get_torch_cuda_device_capability()
|
||||
compute_capability = get_torch_cuda_device_capability() if torch_device == "cuda" else None
|
||||
self.assertTrue(fp8_e4m3_bf16_memory_footprint < fp8_e4m3_fp32_memory_footprint < fp32_memory_footprint)
|
||||
# NOTE: the following assertion would fail on our CI (running Tesla T4) due to bf16 using more memory than fp32.
|
||||
# On other devices, such as DGX (Ampere) and Audace (Ada), the test passes. So, we conditionally check it.
|
||||
@@ -1527,7 +1529,7 @@ class ModelTesterMixin:
|
||||
)
|
||||
|
||||
@parameterized.expand([False, True])
|
||||
@require_torch_gpu
|
||||
@require_torch_accelerator
|
||||
def test_group_offloading(self, record_stream):
|
||||
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
||||
torch.manual_seed(0)
|
||||
|
||||
Reference in New Issue
Block a user