mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
enable group_offloading and PipelineDeviceAndDtypeStabilityTests on XPU, all passed (#11620)
* enable group_offloading and PipelineDeviceAndDtypeStabilityTests on XPU, all passed Signed-off-by: Matrix YAO <matrix.yao@intel.com> * fix style Signed-off-by: Matrix YAO <matrix.yao@intel.com> * fix Signed-off-by: Matrix YAO <matrix.yao@intel.com> --------- Signed-off-by: Matrix YAO <matrix.yao@intel.com> Co-authored-by: Aryan <aryan@huggingface.co>
This commit is contained in:
@@ -22,7 +22,13 @@ from diffusers.models import ModelMixin
|
||||
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.utils import get_logger
|
||||
from diffusers.utils.import_utils import compare_versions
|
||||
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
|
||||
from diffusers.utils.testing_utils import (
|
||||
backend_empty_cache,
|
||||
backend_max_memory_allocated,
|
||||
backend_reset_peak_memory_stats,
|
||||
require_torch_accelerator,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
|
||||
class DummyBlock(torch.nn.Module):
|
||||
@@ -107,7 +113,7 @@ class DummyPipeline(DiffusionPipeline):
|
||||
return x
|
||||
|
||||
|
||||
@require_torch_gpu
|
||||
@require_torch_accelerator
|
||||
class GroupOffloadTests(unittest.TestCase):
|
||||
in_features = 64
|
||||
hidden_features = 256
|
||||
@@ -125,8 +131,8 @@ class GroupOffloadTests(unittest.TestCase):
|
||||
del self.model
|
||||
del self.input
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
backend_empty_cache(torch_device)
|
||||
backend_reset_peak_memory_stats(torch_device)
|
||||
|
||||
def get_model(self):
|
||||
torch.manual_seed(0)
|
||||
@@ -141,8 +147,8 @@ class GroupOffloadTests(unittest.TestCase):
|
||||
@torch.no_grad()
|
||||
def run_forward(model):
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
backend_empty_cache(torch_device)
|
||||
backend_reset_peak_memory_stats(torch_device)
|
||||
self.assertTrue(
|
||||
all(
|
||||
module._diffusers_hook.get_hook("group_offloading") is not None
|
||||
@@ -152,7 +158,7 @@ class GroupOffloadTests(unittest.TestCase):
|
||||
)
|
||||
model.eval()
|
||||
output = model(self.input)[0].cpu()
|
||||
max_memory_allocated = torch.cuda.max_memory_allocated()
|
||||
max_memory_allocated = backend_max_memory_allocated(torch_device)
|
||||
return output, max_memory_allocated
|
||||
|
||||
self.model.to(torch_device)
|
||||
@@ -187,10 +193,10 @@ class GroupOffloadTests(unittest.TestCase):
|
||||
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading5, atol=1e-5))
|
||||
|
||||
# Memory assertions - offloading should reduce memory usage
|
||||
self.assertTrue(mem4 <= mem5 < mem2 < mem3 < mem1 < mem_baseline)
|
||||
self.assertTrue(mem4 <= mem5 < mem2 <= mem3 < mem1 < mem_baseline)
|
||||
|
||||
def test_warning_logged_if_group_offloaded_module_moved_to_cuda(self):
|
||||
if torch.device(torch_device).type != "cuda":
|
||||
def test_warning_logged_if_group_offloaded_module_moved_to_accelerator(self):
|
||||
if torch.device(torch_device).type not in ["cuda", "xpu"]:
|
||||
return
|
||||
self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
|
||||
logger = get_logger("diffusers.models.modeling_utils")
|
||||
@@ -199,8 +205,8 @@ class GroupOffloadTests(unittest.TestCase):
|
||||
self.model.to(torch_device)
|
||||
self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])
|
||||
|
||||
def test_warning_logged_if_group_offloaded_pipe_moved_to_cuda(self):
|
||||
if torch.device(torch_device).type != "cuda":
|
||||
def test_warning_logged_if_group_offloaded_pipe_moved_to_accelerator(self):
|
||||
if torch.device(torch_device).type not in ["cuda", "xpu"]:
|
||||
return
|
||||
pipe = DummyPipeline(self.model)
|
||||
self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
|
||||
@@ -210,19 +216,20 @@ class GroupOffloadTests(unittest.TestCase):
|
||||
pipe.to(torch_device)
|
||||
self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])
|
||||
|
||||
def test_error_raised_if_streams_used_and_no_cuda_device(self):
|
||||
original_is_available = torch.cuda.is_available
|
||||
torch.cuda.is_available = lambda: False
|
||||
def test_error_raised_if_streams_used_and_no_accelerator_device(self):
|
||||
torch_accelerator_module = getattr(torch, torch_device, torch.cuda)
|
||||
original_is_available = torch_accelerator_module.is_available
|
||||
torch_accelerator_module.is_available = lambda: False
|
||||
with self.assertRaises(ValueError):
|
||||
self.model.enable_group_offload(
|
||||
onload_device=torch.device("cuda"), offload_type="leaf_level", use_stream=True
|
||||
onload_device=torch.device(torch_device), offload_type="leaf_level", use_stream=True
|
||||
)
|
||||
torch.cuda.is_available = original_is_available
|
||||
torch_accelerator_module.is_available = original_is_available
|
||||
|
||||
def test_error_raised_if_supports_group_offloading_false(self):
|
||||
self.model._supports_group_offloading = False
|
||||
with self.assertRaisesRegex(ValueError, "does not support group offloading"):
|
||||
self.model.enable_group_offload(onload_device=torch.device("cuda"))
|
||||
self.model.enable_group_offload(onload_device=torch.device(torch_device))
|
||||
|
||||
def test_error_raised_if_model_offloading_applied_on_group_offloaded_module(self):
|
||||
pipe = DummyPipeline(self.model)
|
||||
@@ -249,7 +256,7 @@ class GroupOffloadTests(unittest.TestCase):
|
||||
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
|
||||
|
||||
def test_block_level_stream_with_invocation_order_different_from_initialization_order(self):
|
||||
if torch.device(torch_device).type != "cuda":
|
||||
if torch.device(torch_device).type not in ["cuda", "xpu"]:
|
||||
return
|
||||
model = DummyModelWithMultipleBlocks(
|
||||
in_features=self.in_features,
|
||||
|
||||
@@ -19,7 +19,7 @@ from diffusers import (
|
||||
UNet2DConditionModel,
|
||||
)
|
||||
from diffusers.pipelines.pipeline_loading_utils import is_safetensors_compatible, variant_compatible_siblings
|
||||
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
|
||||
from diffusers.utils.testing_utils import require_torch_accelerator, torch_device
|
||||
|
||||
|
||||
class IsSafetensorsCompatibleTests(unittest.TestCase):
|
||||
@@ -850,9 +850,9 @@ class ProgressBarTests(unittest.TestCase):
|
||||
self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")
|
||||
|
||||
|
||||
@require_torch_gpu
|
||||
@require_torch_accelerator
|
||||
class PipelineDeviceAndDtypeStabilityTests(unittest.TestCase):
|
||||
expected_pipe_device = torch.device("cuda:0")
|
||||
expected_pipe_device = torch.device(f"{torch_device}:0")
|
||||
expected_pipe_dtype = torch.float64
|
||||
|
||||
def get_dummy_components_image_generation(self):
|
||||
@@ -921,8 +921,8 @@ class PipelineDeviceAndDtypeStabilityTests(unittest.TestCase):
|
||||
pipe.to(device=torch_device, dtype=torch.float32)
|
||||
|
||||
pipe.unet.to(device="cpu")
|
||||
pipe.vae.to(device="cuda")
|
||||
pipe.text_encoder.to(device="cuda:0")
|
||||
pipe.vae.to(device=torch_device)
|
||||
pipe.text_encoder.to(device=f"{torch_device}:0")
|
||||
|
||||
pipe_device = pipe.device
|
||||
|
||||
|
||||
Reference in New Issue
Block a user