1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[LoRA] allow big CUDA tests to run properly for LoRA (and others) (#9845)

* allow big lora tests to run on the CI.

* print

* print.

* print

* print

* print

* print

* more

* print

* remove print.

* remove print

* directly place on cuda.

* remove pipeline.

* remove

* fix

* fix

* spaces

* quality

* updates

* directly place flux controlnet pipeline on cuda.

* torch_device instead of cuda.

* style

* device placement.

* fixes

* add big gpu marker for mochi; rename test correctly

* address feedback

* fix

---------

Co-authored-by: Aryan <aryan@huggingface.co>
This commit is contained in:
Sayak Paul
2025-01-10 12:50:24 +05:30
committed by GitHub
parent 12fbe3f7dc
commit a6f043a80f
5 changed files with 38 additions and 29 deletions

View File

@@ -796,8 +796,8 @@ class FluxControlLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
@nightly
@require_torch_gpu
@require_peft_backend
@unittest.skip("We cannot run inference on this model with the current CI hardware")
# TODO (DN6, sayakpaul): move these tests to a beefier GPU
@require_big_gpu_with_torch_cuda
@pytest.mark.big_gpu_with_torch_cuda
class FluxLoRAIntegrationTests(unittest.TestCase):
"""internal note: The integration slices were obtained on audace.
@@ -819,6 +819,7 @@ class FluxLoRAIntegrationTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
del self.pipeline
gc.collect()
torch.cuda.empty_cache()
@@ -826,7 +827,10 @@ class FluxLoRAIntegrationTests(unittest.TestCase):
self.pipeline.load_lora_weights("TheLastBen/Jon_Snow_Flux_LoRA", weight_name="jon_snow.safetensors")
self.pipeline.fuse_lora()
self.pipeline.unload_lora_weights()
self.pipeline.enable_model_cpu_offload()
# Instead of calling `enable_model_cpu_offload()`, we do a cuda placement here because the CI
# run supports it. We have about 34GB RAM in the CI runner which kills the test when run with
# `enable_model_cpu_offload()`. We repeat this for the other tests, too.
self.pipeline = self.pipeline.to(torch_device)
prompt = "jon snow eating pizza with ketchup"
@@ -848,7 +852,7 @@ class FluxLoRAIntegrationTests(unittest.TestCase):
self.pipeline.load_lora_weights("Norod78/brain-slug-flux")
self.pipeline.fuse_lora()
self.pipeline.unload_lora_weights()
self.pipeline.enable_model_cpu_offload()
self.pipeline = self.pipeline.to(torch_device)
prompt = "The cat with a brain slug earring"
out = self.pipeline(
@@ -870,7 +874,7 @@ class FluxLoRAIntegrationTests(unittest.TestCase):
self.pipeline.load_lora_weights("cocktailpeanut/optimus", weight_name="optimus.safetensors")
self.pipeline.fuse_lora()
self.pipeline.unload_lora_weights()
self.pipeline.enable_model_cpu_offload()
self.pipeline = self.pipeline.to(torch_device)
prompt = "optimus is cleaning the house with broomstick"
out = self.pipeline(
@@ -892,7 +896,7 @@ class FluxLoRAIntegrationTests(unittest.TestCase):
self.pipeline.load_lora_weights("XLabs-AI/flux-lora-collection", weight_name="disney_lora.safetensors")
self.pipeline.fuse_lora()
self.pipeline.unload_lora_weights()
self.pipeline.enable_model_cpu_offload()
self.pipeline = self.pipeline.to(torch_device)
prompt = "A blue jay standing on a large basket of rainbow macarons, disney style"

View File

@@ -17,6 +17,7 @@ import sys
import unittest
import numpy as np
import pytest
import torch
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
@@ -31,9 +32,9 @@ from diffusers.utils.import_utils import is_accelerate_available
from diffusers.utils.testing_utils import (
nightly,
numpy_cosine_similarity_distance,
require_big_gpu_with_torch_cuda,
require_peft_backend,
require_torch_gpu,
slow,
torch_device,
)
@@ -128,11 +129,12 @@ class SD3LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pass
@slow
@nightly
@require_torch_gpu
@require_peft_backend
class LoraSD3IntegrationTests(unittest.TestCase):
@require_big_gpu_with_torch_cuda
@pytest.mark.big_gpu_with_torch_cuda
class SD3LoraIntegrationTests(unittest.TestCase):
pipeline_class = StableDiffusion3Img2ImgPipeline
repo_id = "stabilityai/stable-diffusion-3-medium-diffusers"
@@ -166,14 +168,17 @@ class LoraSD3IntegrationTests(unittest.TestCase):
def test_sd3_img2img_lora(self):
pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.float16)
pipe.load_lora_weights("zwloong/sd3-lora-training-rank16-v2", weight_name="pytorch_lora_weights.safetensors")
pipe.enable_sequential_cpu_offload()
pipe.load_lora_weights("zwloong/sd3-lora-training-rank16-v2")
pipe.fuse_lora()
pipe.unload_lora_weights()
pipe = pipe.to(torch_device)
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images[0]
image_slice = image[0, -3:, -3:]
expected_slice = np.array([0.5396, 0.5776, 0.7432, 0.5151, 0.5586, 0.7383, 0.5537, 0.5933, 0.7153])
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())
assert max_diff < 1e-4, f"Outputs are not close enough, got {max_diff}"

View File

@@ -32,9 +32,9 @@ from diffusers.models import FluxControlNetModel
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
enable_full_determinism,
nightly,
numpy_cosine_similarity_distance,
require_big_gpu_with_torch_cuda,
slow,
torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
@@ -204,7 +204,7 @@ class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
assert (output_height, output_width) == (expected_height, expected_width)
@slow
@nightly
@require_big_gpu_with_torch_cuda
@pytest.mark.big_gpu_with_torch_cuda
class FluxControlNetPipelineSlowTests(unittest.TestCase):
@@ -230,8 +230,7 @@ class FluxControlNetPipelineSlowTests(unittest.TestCase):
text_encoder_2=None,
controlnet=controlnet,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
).to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
@@ -241,12 +240,12 @@ class FluxControlNetPipelineSlowTests(unittest.TestCase):
prompt_embeds = torch.load(
hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
)
).to(torch_device)
pooled_prompt_embeds = torch.load(
hf_hub_download(
repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
)
)
).to(torch_device)
output = pipe(
prompt_embeds=prompt_embeds,

View File

@@ -9,6 +9,7 @@ from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPToken
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxPipeline, FluxTransformer2DModel
from diffusers.utils.testing_utils import (
nightly,
numpy_cosine_similarity_distance,
require_big_gpu_with_torch_cuda,
slow,
@@ -209,7 +210,7 @@ class FluxPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxIPAdapte
assert (output_height, output_width) == (expected_height, expected_width)
@slow
@nightly
@require_big_gpu_with_torch_cuda
@pytest.mark.big_gpu_with_torch_cuda
class FluxPipelineSlowTests(unittest.TestCase):
@@ -227,19 +228,16 @@ class FluxPipelineSlowTests(unittest.TestCase):
torch.cuda.empty_cache()
def get_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
generator = torch.Generator(device="cpu").manual_seed(seed)
prompt_embeds = torch.load(
hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
)
).to(torch_device)
pooled_prompt_embeds = torch.load(
hf_hub_download(
repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
)
)
).to(torch_device)
return {
"prompt_embeds": prompt_embeds,
"pooled_prompt_embeds": pooled_prompt_embeds,
@@ -253,8 +251,7 @@ class FluxPipelineSlowTests(unittest.TestCase):
def test_flux_inference(self):
pipe = self.pipeline_class.from_pretrained(
self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None
)
pipe.enable_model_cpu_offload()
).to(torch_device)
inputs = self.get_inputs(torch_device)

View File

@@ -17,15 +17,17 @@ import inspect
import unittest
import numpy as np
import pytest
import torch
from transformers import AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLMochi, FlowMatchEulerDiscreteScheduler, MochiPipeline, MochiTransformer3DModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
nightly,
numpy_cosine_similarity_distance,
require_big_gpu_with_torch_cuda,
require_torch_gpu,
slow,
torch_device,
)
@@ -260,8 +262,10 @@ class MochiPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
)
@slow
@nightly
@require_torch_gpu
@require_big_gpu_with_torch_cuda
@pytest.mark.big_gpu_with_torch_cuda
class MochiPipelineIntegrationTests(unittest.TestCase):
prompt = "A painting of a squirrel eating a burger."
@@ -293,7 +297,7 @@ class MochiPipelineIntegrationTests(unittest.TestCase):
).frames
video = videos[0]
expected_video = torch.randn(1, 16, 480, 848, 3).numpy()
expected_video = torch.randn(1, 19, 480, 848, 3).numpy()
max_diff = numpy_cosine_similarity_distance(video, expected_video)
assert max_diff < 1e-3, f"Max diff is too high. got {video}"