1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

Merge branch 'main' into attn-refactor-blocks

This commit is contained in:
DN6
2025-10-08 14:40:26 +05:30
36 changed files with 1276 additions and 632 deletions

View File

@@ -72,7 +72,6 @@ jobs:
image-name:
- diffusers-pytorch-cpu
- diffusers-pytorch-cuda
- diffusers-pytorch-cuda
- diffusers-pytorch-xformers-cuda
- diffusers-pytorch-minimum-cuda
- diffusers-doc-builder

View File

@@ -286,4 +286,3 @@ jobs:
with:
name: pr_main_test_reports
path: reports

View File

@@ -1,56 +1,42 @@
FROM ubuntu:20.04
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa
RUN apt-get -y update && apt-get install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
libgl1
RUN apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
python3.10 \
python3-pip \
libgl1 \
zip \
wget \
python3.10-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3.10 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
ENV UV_PYTHON=/usr/local/bin/python
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3.10 -m uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
invisible_watermark \
--extra-index-url https://download.pytorch.org/whl/cpu && \
python3.10 -m uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
matplotlib \
setuptools==69.5.1 \
bitsandbytes \
torchao \
gguf \
optimum-quanto
RUN pip install uv
RUN uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
--extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
# Extra dependencies
RUN uv pip install --no-cache-dir \
accelerate \
numpy==1.26.4 \
hf_transfer \
setuptools==69.5.1 \
bitsandbytes \
torchao \
gguf \
optimum-quanto
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
CMD ["/bin/bash"]

View File

@@ -1,50 +1,37 @@
FROM ubuntu:20.04
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa
RUN apt-get -y update && apt-get install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
libgl1
RUN apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
python3.10 \
python3.10-dev \
python3-pip \
libgl1 \
python3.10-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3.10 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
ENV UV_PYTHON=/usr/local/bin/python
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3.10 -m uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
invisible_watermark \
--extra-index-url https://download.pytorch.org/whl/cpu && \
python3.10 -m uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers matplotlib \
hf_transfer
RUN pip install uv
RUN uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
--extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
# Extra dependencies
RUN uv pip install --no-cache-dir \
accelerate \
numpy==1.26.4 \
hf_transfer
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
CMD ["/bin/bash"]

View File

@@ -2,11 +2,13 @@ FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ARG PYTHON_VERSION=3.12
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa
&& add-apt-repository ppa:deadsnakes/ppa && \
apt-get update
RUN apt install -y bash \
build-essential \
@@ -16,36 +18,31 @@ RUN apt install -y bash \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.10 \
python3.10-dev \
python3 \
python3-pip \
python3.10-venv && \
rm -rf /var/lib/apt/lists
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
# make sure to use venv
RUN python3.10 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
ENV PATH="/root/.local/bin:$PATH"
ENV VIRTUAL_ENV="/opt/venv"
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3.10 -m uv pip install --no-cache-dir \
RUN uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
invisible_watermark && \
python3.10 -m pip install --no-cache-dir \
torchaudio
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
# Extra dependencies
RUN uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
hf_transfer \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
pytorch-lightning \
pytorch-lightning \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -2,6 +2,7 @@ FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ARG PYTHON_VERSION=3.10
ENV DEBIAN_FRONTEND=noninteractive
ENV MINIMUM_SUPPORTED_TORCH_VERSION="2.1.0"
ENV MINIMUM_SUPPORTED_TORCHVISION_VERSION="0.16.0"
@@ -9,7 +10,8 @@ ENV MINIMUM_SUPPORTED_TORCHAUDIO_VERSION="2.1.0"
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa
&& add-apt-repository ppa:deadsnakes/ppa && \
apt-get update
RUN apt install -y bash \
build-essential \
@@ -19,35 +21,31 @@ RUN apt install -y bash \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.10 \
python3.10-dev \
python3 \
python3-pip \
python3.10-venv && \
rm -rf /var/lib/apt/lists
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
# make sure to use venv
RUN python3.10 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
ENV PATH="/root/.local/bin:$PATH"
ENV VIRTUAL_ENV="/opt/venv"
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3.10 -m uv pip install --no-cache-dir \
RUN uv pip install --no-cache-dir \
torch==$MINIMUM_SUPPORTED_TORCH_VERSION \
torchvision==$MINIMUM_SUPPORTED_TORCHVISION_VERSION \
torchaudio==$MINIMUM_SUPPORTED_TORCHAUDIO_VERSION \
invisible_watermark && \
python3.10 -m pip install --no-cache-dir \
torchaudio==$MINIMUM_SUPPORTED_TORCHAUDIO_VERSION
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
# Extra dependencies
RUN uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
hf_transfer \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
pytorch-lightning \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -2,50 +2,48 @@ FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ARG PYTHON_VERSION=3.12
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa
&& add-apt-repository ppa:deadsnakes/ppa && \
apt-get update
RUN apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.10 \
python3.10-dev \
python3-pip \
python3.10-venv && \
rm -rf /var/lib/apt/lists
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3 \
python3-pip \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
# make sure to use venv
RUN python3.10 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
ENV PATH="/root/.local/bin:$PATH"
ENV VIRTUAL_ENV="/opt/venv"
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3.10 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
invisible_watermark && \
python3.10 -m uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
hf_transfer \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
xformers \
hf_transfer
RUN uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
# Extra dependencies
RUN uv pip install --no-cache-dir \
accelerate \
numpy==1.26.4 \
pytorch-lightning \
hf_transfer \
xformers
CMD ["/bin/bash"]

View File

@@ -14,51 +14,47 @@ specific language governing permissions and limitations under the License.
## 서문 [[preamble]]
[Diffusers](https://huggingface.co/docs/diffusers/index)는 사전 훈련된 diffusion 모델을 제공하며 추론 훈련을 위한 모듈 툴박스로 용됩니다.
[Diffusers](https://huggingface.co/docs/diffusers/index)는 사전 훈련된 diffusion 모델을 제공하며, 추론 훈련을 위한 모듈 툴박스로 용됩니다.
이 기술의 실제 적용 사회에 미칠 수 있는 부정적 영향을 고려하여 Diffusers 라이브러리의 개발, 사용자 기여 사용에 윤리 지침을 제공하는 것이 중요하다고 생각합니다.
이이 기술을 사용함에 따른 위험은 여전히 검토 중이지만, 몇 가지 예를 들면: 예술가들에 대한 저작권 문제; 딥 페이크의 악용; 부적절한 맥락에서의 성적 콘텐츠 생성; 동의 없는 사칭; 소수자 집단의 억압을 영속화하는 유해한 사회적 편견 등이 있습니다.
우리는 위험을 지속적으로 추적하고 커뮤니티의 응답과 소중한 피드백에 따라 다음 지침을 조정할 것입니다.
이 기술의 실제 적용 사례와 사회에 미칠 수 있는 잠재적 부정적 영향을 고려할 때, Diffusers 라이브러리의 개발, 사용자 기여, 사용에 윤리 지침을 제공하는 것이 중요하다고 생각합니다.
이 기술 사용과 관련된 위험은 여전히 검토 중이지만, 예를 들면: 예술가의 저작권 문제, 딥페이크 악용, 부적절한 맥락에서의 성적 콘텐츠 생성, 비동의 사칭, 소수자 집단 억압을 영속화하는 유해한 사회적 편견 등이 있습니다.
우리는 이러한 위험을 지속적으로 추적하고, 커뮤니티의 반응과 소중한 피드백에 따라 아래 지침을 조정할 것입니다.
## 범위 [[scope]]
Diffusers 커뮤니티는 프로젝트 개발에 다음과 같은 윤리 지침을 적용하며, 특히 윤리적 문제와 관련된 민감한 주제에 대 커뮤니티의 기여를 조정하는 데 도움을 줄 것입니다.
Diffusers 커뮤니티는 프로젝트 개발에 다음 윤리 지침을 적용하며, 특히 윤리적 문제와 관련된 민감한 주제에 대 커뮤니티의 기여를 조정하는 데 도움을 줄 것입니다.
## 윤리 지침 [[ethical-guidelines]]
다음 윤리 지침은 일반적으로 적용되지만, 민감한 윤리적 문제와 관련하여 기술적 선택을 할 때 이를 우선적으로 적용할 것입니다. 나아가, 해당 기술의 최신 동향과 관련된 새로운 위험이 발생함에 따라 이러한 윤리 원칙을 조정할 것을 약속드립니다.
다음 윤리 지침은 일반적으로 적용되지만, 윤리적으로 민감한 문제와 관련 기술적 선택을 할 때 우선적으로 적용니다. 또한, 해당 기술의 최신 동향과 관련된 새로운 위험이 발생함에 따라 이러한 윤리 원칙을 지속적으로 조정할 것을 약속니다.
- **투명성**: 우리는 PR 관리하고, 사용자에게 우리의 선택을 설명하며, 기술적 의사결정을 내릴 때 투명성을 유지할 것을 약속합니다.
- **투명성**: 우리는 PR 관리, 사용자에게 선택의 이유 설명, 기술적 의사결정 과정에서 투명성을 유지할 것을 약속합니다.
- **일관성**: 우리는 프로젝트 관리에서 사용자에게 동일한 수준의 관심을 보장하고 기술적으로 안정고 일관된 상태를 유지할 것을 약속합니다.
- **일관성**: 프로젝트 관리에서 모든 사용자에게 동일한 수준의 관심을 보장하고, 기술적으로 안정적이고 일관된 상태를 유지할 것을 약속합니다.
- **간결성**: Diffusers 라이브러리를 사용하고 활용하기 쉽게 만들기 위해, 프로젝트의 목표를 간결하고 일관성 있게 유지할 것을 약속합니다.
- **간결성**: Diffusers 라이브러리를 쉽게 사용하고 활용할 수 있도록, 프로젝트의 목표를 간결하고 일관성 있게 유지할 것을 약속합니다.
- **접근성**: Diffusers 프로젝트는 기술적 전문 지식 없어도 프로젝트 운영에 참여할 수 있는 기여자의 진입장벽을 낮춥니다. 이를 통해 연구 결과물이 커뮤니티에 더 잘 접근 수 있게 됩니다.
- **접근성**: Diffusers 프로젝트는 기술적 전문지식 없어도 기여할 수 있도록 진입장벽을 낮춥니다. 이를 통해 연구 결과물이 커뮤니티에 더 잘 접근 수 있니다.
- **재현성**: 우리는 Diffusers 라이브러리를 통해 제공되는 업스트림(upstream) 코드, 모델 데이터셋의 재현성에 대해 투명하게 공개 것을 목표로 합니다.
- **책임**: 우리는 커뮤니티와 팀워크를 통해, 이 기술의 잠재적인 위험과 위험을 예측하고 완화하는 데 대한 공동 책임을 가지고 있습니다.
- **재현성**: 우리는 Diffusers 라이브러리를 통해 제공되는 업스트림 코드, 모델, 데이터셋의 재현성에 대해 투명하게 공개하는 것을 목표로 합니다.
- **책임**: 커뮤니티와 팀워크를 통해, 이 기술의 잠재적 위험을 예측하고 완화하는 데 공동 책임을 집니다.
## 구현 사례: 안전 기능과 메커니즘 [[examples-of-implementations-safety-features-and-mechanisms]]
팀은 diffusion 기술과 관련된 잠재적 윤리 및 사회적 위험에 대하기 위 기술적비기술적 도구를 제공하고자 하고 있습니다. 또한, 커뮤니티의 참여는 이러한 기능 구현하고 우리와 함께 인식을 높이는 데 매우 중요합니다.
팀은 diffusion 기술과 관련된 잠재적 윤리 및 사회적 위험에 대하기 위 기술적·비기술적 도구를 제공하고자 노력하고 있습니다. 또한, 커뮤니티의 참여는 이러한 기능 구현과 인식 제고에 매우 중요합니다.
- [**커뮤니티 탭**](https://huggingface.co/docs/hub/repositories-pull-requests-discussions): 이를 통해 커뮤니티 프로젝트에 대해 토론하고 더 나은 협을 할 수 있니다.
- [**커뮤니티 탭**](https://huggingface.co/docs/hub/repositories-pull-requests-discussions): 커뮤니티 프로젝트에 대해 토론하고 더 나은 협을 할 수 있도록 지원합니다.
- **편향 탐색 및 평가**: Hugging Face 팀은 Stable Diffusion 모델의 편향성을 대화형으로 보여주는 [space](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer) 제공합니다. 이런 의미에서, 우리는 편향 탐색 평가를 지원하고 장려합니다.
- **편향 탐색 및 평가**: Hugging Face 팀은 Stable Diffusion 모델의 편향성을 대화형으로 보여주는 [space](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer) 제공합니다. 우리는 이러한 편향 탐색 평가를 지원하고 장려합니다.
- **배포에서의 안전 유도**
- [**안전한 Stable Diffusion**](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/stable_diffusion_safe): 이는 필터되지 않은 웹 크롤링 데이터셋으로 훈련된 Stable Diffusion과 같은 모델이 부적절 변질에 취약한 문제를 완화합니다. 관련 논문: [Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models](https://huggingface.co/papers/2211.05105).
- [**안전한 Stable Diffusion**](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/stable_diffusion_safe): 필터되지 않은 웹 크롤링 데이터셋으로 훈련된 Stable Diffusion과 같은 모델이 부적절하게 변질되는 문제를 완화합니다. 관련 논문: [Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models](https://huggingface.co/papers/2211.05105).
- [**안전 검사기**](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py): 이미지가 생성된 후에 이미가 임베딩 공간에서 일련의 하드코딩된 유해 개념 클래스 확률을 확인하고 비교합니다. 유해 개념은 역공학을 방지하기 위해 의도적으로 숨겨져 있습니다.
- [**안전 검사기**](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py): 생성된 이미가 임베딩 공간에서 하드코딩된 유해 개념 클래스와 일치할 확률을 확인하고 비교합니다. 유해 개념은 역공학을 방지하기 위해 의도적으로 숨겨져 있습니다.
- **Hub에서의 단계적 배포**: 특히 민감한 상황에서는 일부 리포지토리에 대한 접근을 제한해야 합니다. 단계적 배포는 중간 단계로, 리포지토리 작성자가 사용에 대 더 많은 통제을 갖게 합니다.
- **Hub에서의 단계적 배포**: 특히 민감한 상황에서는 일부 리포지토리에 대한 접근을 제한할 수 있습니다. 단계적 배포는 리포지토리 작성자가 사용에 대 더 많은 통제을 갖도록 하는 중간 단계입니다.
- **라이선싱**: [OpenRAILs](https://huggingface.co/blog/open_rail)와 같은 새로운 유형의 라이선싱을 통해 자유로운 접근을 보장하면서도 책임 있는 사용을 위한 일련의 제한을 둘 수 있습니다.
- **라이선싱**: [OpenRAILs](https://huggingface.co/blog/open_rail)와 같은 새로운 유형의 라이선스를 통해 자유로운 접근을 보장하면서도 보다 책임 있는 사용을 위한 일련의 제한을 둘 수 있습니다.

View File

@@ -25,6 +25,10 @@
# "Jinja2",
# "peft>=0.11.1",
# "sentencepiece",
# "torchvision",
# "datasets",
# "bitsandbytes",
# "prodigyopt",
# ]
# ///

View File

@@ -25,6 +25,10 @@
# "Jinja2",
# "peft>=0.11.1",
# "sentencepiece",
# "torchvision",
# "datasets",
# "bitsandbytes",
# "prodigyopt",
# ]
# ///

View File

@@ -14,6 +14,24 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# /// script
# dependencies = [
# "diffusers @ git+https://github.com/huggingface/diffusers.git",
# "torch>=2.0.0",
# "accelerate>=0.31.0",
# "transformers>=4.41.2",
# "ftfy",
# "tensorboard",
# "Jinja2",
# "peft>=0.11.1",
# "sentencepiece",
# "torchvision",
# "datasets",
# "bitsandbytes",
# "prodigyopt",
# ]
# ///
import argparse
import copy
import itertools

View File

@@ -13,6 +13,24 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# /// script
# dependencies = [
# "diffusers @ git+https://github.com/huggingface/diffusers.git",
# "torch>=2.0.0",
# "accelerate>=0.31.0",
# "transformers>=4.41.2",
# "ftfy",
# "tensorboard",
# "Jinja2",
# "peft>=0.11.1",
# "sentencepiece",
# "torchvision",
# "datasets",
# "bitsandbytes",
# "prodigyopt",
# ]
# ///
import argparse
import copy
import itertools
@@ -1320,7 +1338,7 @@ def main(args):
batch["pixel_values"] = batch["pixel_values"].to(
accelerator.device, non_blocking=True, dtype=vae.dtype
)
latents_cache.append(vae.encode(batch["pixel_values"]).latent_dist)
latents_cache.append(vae.encode(batch["pixel_values"]).latent_dist)
if train_dataset.custom_instance_prompts:
with offload_models(text_encoding_pipeline, device=accelerator.device, offload=args.offload):
prompt_embeds, prompt_embeds_mask = compute_text_embeddings(

View File

@@ -25,6 +25,10 @@
# "Jinja2",
# "peft>=0.14.0",
# "sentencepiece",
# "torchvision",
# "datasets",
# "bitsandbytes",
# "prodigyopt",
# ]
# ///

View File

@@ -5,4 +5,4 @@ datasets>=2.19.1
ftfy
tensorboard
Jinja2
peft==0.7.0
peft>=0.17.0

View File

@@ -5,4 +5,4 @@ ftfy
tensorboard
Jinja2
datasets
peft==0.7.0
peft>=0.17.0

View File

@@ -390,6 +390,8 @@ else:
"QwenImageAutoBlocks",
"QwenImageEditAutoBlocks",
"QwenImageEditModularPipeline",
"QwenImageEditPlusAutoBlocks",
"QwenImageEditPlusModularPipeline",
"QwenImageModularPipeline",
"StableDiffusionXLAutoBlocks",
"StableDiffusionXLModularPipeline",
@@ -1052,6 +1054,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
QwenImageAutoBlocks,
QwenImageEditAutoBlocks,
QwenImageEditModularPipeline,
QwenImageEditPlusAutoBlocks,
QwenImageEditPlusModularPipeline,
QwenImageModularPipeline,
StableDiffusionXLAutoBlocks,
StableDiffusionXLModularPipeline,

View File

@@ -17,7 +17,10 @@ from dataclasses import dataclass
from typing import Dict, List, Type, Union
import torch
import torch.distributed._functional_collectives as funcol
if torch.distributed.is_available():
import torch.distributed._functional_collectives as funcol
from ..models._modeling_parallel import (
ContextParallelConfig,

View File

@@ -353,7 +353,9 @@ class LTXVideoTransformerBlock(nn.Module):
norm_hidden_states = self.norm1(hidden_states)
num_ada_params = self.scale_shift_table.shape[0]
ada_values = self.scale_shift_table[None, None] + temb.reshape(batch_size, temb.size(1), num_ada_params, -1)
ada_values = self.scale_shift_table[None, None].to(temb.device) + temb.reshape(
batch_size, temb.size(1), num_ada_params, -1
)
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ada_values.unbind(dim=2)
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa

View File

@@ -682,12 +682,12 @@ class WanTransformer3DModel(
# 5. Output norm, projection & unpatchify
if temb.ndim == 3:
# batch_size, seq_len, inner_dim (wan 2.2 ti2v)
shift, scale = (self.scale_shift_table.unsqueeze(0) + temb.unsqueeze(2)).chunk(2, dim=2)
shift, scale = (self.scale_shift_table.unsqueeze(0).to(temb.device) + temb.unsqueeze(2)).chunk(2, dim=2)
shift = shift.squeeze(2)
scale = scale.squeeze(2)
else:
# batch_size, inner_dim
shift, scale = (self.scale_shift_table + temb.unsqueeze(1)).chunk(2, dim=1)
shift, scale = (self.scale_shift_table.to(temb.device) + temb.unsqueeze(1)).chunk(2, dim=1)
# Move the shift and scale tensors to the same device as hidden_states.
# When using multi-GPU inference via accelerate these will be on the

View File

@@ -103,7 +103,7 @@ class WanVACETransformerBlock(nn.Module):
control_hidden_states = control_hidden_states + hidden_states
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
self.scale_shift_table + temb.float()
self.scale_shift_table.to(temb.device) + temb.float()
).chunk(6, dim=1)
# 1. Self-attention
@@ -361,7 +361,7 @@ class WanVACETransformer3DModel(
hidden_states = hidden_states + control_hint * scale
# 6. Output norm, projection & unpatchify
shift, scale = (self.scale_shift_table + temb.unsqueeze(1)).chunk(2, dim=1)
shift, scale = (self.scale_shift_table.to(temb.device) + temb.unsqueeze(1)).chunk(2, dim=1)
# Move the shift and scale tensors to the same device as hidden_states.
# When using multi-GPU inference via accelerate these will be on the

View File

@@ -52,6 +52,8 @@ else:
"QwenImageModularPipeline",
"QwenImageEditModularPipeline",
"QwenImageEditAutoBlocks",
"QwenImageEditPlusModularPipeline",
"QwenImageEditPlusAutoBlocks",
]
_import_structure["components_manager"] = ["ComponentsManager"]
@@ -78,6 +80,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
QwenImageAutoBlocks,
QwenImageEditAutoBlocks,
QwenImageEditModularPipeline,
QwenImageEditPlusAutoBlocks,
QwenImageEditPlusModularPipeline,
QwenImageModularPipeline,
)
from .stable_diffusion_xl import StableDiffusionXLAutoBlocks, StableDiffusionXLModularPipeline

View File

@@ -13,12 +13,12 @@
# limitations under the License.
import inspect
from typing import Any, List, Optional, Tuple, Union
from typing import List, Optional, Union
import numpy as np
import torch
from ...models import AutoencoderKL
from ...pipelines import FluxPipeline
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import logging
from ...utils.torch_utils import randn_tensor
@@ -104,48 +104,6 @@ def calculate_shift(
return mu
# Adapted from the original implementation.
def prepare_latents_img2img(
vae, scheduler, image, timestep, batch_size, num_channels_latents, height, width, dtype, device, generator
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
latent_channels = vae.config.latent_channels
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (vae_scale_factor * 2))
width = 2 * (int(width) // (vae_scale_factor * 2))
shape = (batch_size, num_channels_latents, height, width)
latent_image_ids = _prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
image = image.to(device=device, dtype=dtype)
if image.shape[1] != latent_channels:
image_latents = _encode_vae_image(image=image, generator=generator)
else:
image_latents = image
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
# expand init_latents for batch_size
additional_image_per_prompt = batch_size // image_latents.shape[0]
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
)
else:
image_latents = torch.cat([image_latents], dim=0)
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = scheduler.scale_noise(image_latents, timestep, noise)
latents = _pack_latents(latents, batch_size, num_channels_latents, height, width)
return latents, latent_image_ids
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
@@ -160,6 +118,7 @@ def retrieve_latents(
raise AttributeError("Could not access latents of provided encoder_output")
# TODO: align this with Qwen patchifier
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 2, 4, 1, 3, 5)
@@ -168,35 +127,6 @@ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
return latents
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
latent_image_ids = torch.zeros(height, width, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids.reshape(
latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
return latent_image_ids.to(device=device, dtype=dtype)
# Cannot use "# Copied from" because it introduces weird indentation errors.
def _encode_vae_image(vae, image: torch.Tensor, generator: torch.Generator):
if isinstance(generator, list):
image_latents = [
retrieve_latents(vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(vae.encode(image), generator=generator)
image_latents = (image_latents - vae.config.shift_factor) * vae.config.scaling_factor
return image_latents
def _get_initial_timesteps_and_optionals(
transformer,
scheduler,
@@ -231,92 +161,6 @@ def _get_initial_timesteps_and_optionals(
return timesteps, num_inference_steps, sigmas, guidance
class FluxInputStep(ModularPipelineBlocks):
model_name = "flux"
@property
def description(self) -> str:
return (
"Input processing step that:\n"
" 1. Determines `batch_size` and `dtype` based on `prompt_embeds`\n"
" 2. Adjusts input tensor shapes based on `batch_size` (number of prompts) and `num_images_per_prompt`\n\n"
"All input tensors are expected to have either batch_size=1 or match the batch_size\n"
"of prompt_embeds. The tensors will be duplicated across the batch dimension to\n"
"have a final batch_size of batch_size * num_images_per_prompt."
)
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("num_images_per_prompt", default=1),
InputParam(
"prompt_embeds",
required=True,
type_hint=torch.Tensor,
description="Pre-generated text embeddings. Can be generated from text_encoder step.",
),
InputParam(
"pooled_prompt_embeds",
type_hint=torch.Tensor,
description="Pre-generated pooled text embeddings. Can be generated from text_encoder step.",
),
# TODO: support negative embeddings?
]
@property
def intermediate_outputs(self) -> List[str]:
return [
OutputParam(
"batch_size",
type_hint=int,
description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt",
),
OutputParam(
"dtype",
type_hint=torch.dtype,
description="Data type of model tensor inputs (determined by `prompt_embeds`)",
),
OutputParam(
"prompt_embeds",
type_hint=torch.Tensor,
description="text embeddings used to guide the image generation",
),
OutputParam(
"pooled_prompt_embeds",
type_hint=torch.Tensor,
description="pooled text embeddings used to guide the image generation",
),
# TODO: support negative embeddings?
]
def check_inputs(self, components, block_state):
if block_state.prompt_embeds is not None and block_state.pooled_prompt_embeds is not None:
if block_state.prompt_embeds.shape[0] != block_state.pooled_prompt_embeds.shape[0]:
raise ValueError(
"`prompt_embeds` and `pooled_prompt_embeds` must have the same batch size when passed directly, but"
f" got: `prompt_embeds` {block_state.prompt_embeds.shape} != `pooled_prompt_embeds`"
f" {block_state.pooled_prompt_embeds.shape}."
)
@torch.no_grad()
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
# TODO: consider adding negative embeddings?
block_state = self.get_block_state(state)
self.check_inputs(components, block_state)
block_state.batch_size = block_state.prompt_embeds.shape[0]
block_state.dtype = block_state.prompt_embeds.dtype
_, seq_len, _ = block_state.prompt_embeds.shape
block_state.prompt_embeds = block_state.prompt_embeds.repeat(1, block_state.num_images_per_prompt, 1)
block_state.prompt_embeds = block_state.prompt_embeds.view(
block_state.batch_size * block_state.num_images_per_prompt, seq_len, -1
)
self.set_block_state(state, block_state)
return components, state
class FluxSetTimestepsStep(ModularPipelineBlocks):
model_name = "flux"
@@ -385,6 +229,10 @@ class FluxSetTimestepsStep(ModularPipelineBlocks):
block_state.sigmas = sigmas
block_state.guidance = guidance
# We set the index here to remove DtoH sync, helpful especially during compilation.
# Check out more details here: https://github.com/huggingface/diffusers/pull/11696
components.scheduler.set_begin_index(0)
self.set_block_state(state, block_state)
return components, state
@@ -428,11 +276,6 @@ class FluxImg2ImgSetTimestepsStep(ModularPipelineBlocks):
type_hint=int,
description="The number of denoising steps to perform at inference time",
),
OutputParam(
"latent_timestep",
type_hint=torch.Tensor,
description="The timestep that represents the initial noise level for image-to-image generation",
),
OutputParam("guidance", type_hint=torch.Tensor, description="Optional guidance to be used."),
]
@@ -480,8 +323,6 @@ class FluxImg2ImgSetTimestepsStep(ModularPipelineBlocks):
block_state.sigmas = sigmas
block_state.guidance = guidance
block_state.latent_timestep = timesteps[:1].repeat(batch_size)
self.set_block_state(state, block_state)
return components, state
@@ -520,11 +361,6 @@ class FluxPrepareLatentsStep(ModularPipelineBlocks):
OutputParam(
"latents", type_hint=torch.Tensor, description="The initial latents to use for the denoising process"
),
OutputParam(
"latent_image_ids",
type_hint=torch.Tensor,
description="IDs computed from the image sequence needed for RoPE",
),
]
@staticmethod
@@ -548,20 +384,13 @@ class FluxPrepareLatentsStep(ModularPipelineBlocks):
generator,
latents=None,
):
# Couldn't use the `prepare_latents` method directly from Flux because I decided to copy over
# the packing methods here. So, for example, `comp._pack_latents()` won't work if we were
# to go with the "# Copied from ..." approach. Or maybe there's a way?
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (comp.vae_scale_factor * 2))
width = 2 * (int(width) // (comp.vae_scale_factor * 2))
shape = (batch_size, num_channels_latents, height, width)
if latents is not None:
latent_image_ids = _prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents.to(device=device, dtype=dtype), latent_image_ids
return latents.to(device=device, dtype=dtype)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
@@ -569,12 +398,11 @@ class FluxPrepareLatentsStep(ModularPipelineBlocks):
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
# TODO: move packing latents code to a patchifier
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = _pack_latents(latents, batch_size, num_channels_latents, height, width)
latent_image_ids = _prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents, latent_image_ids
return latents
@torch.no_grad()
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
@@ -583,12 +411,11 @@ class FluxPrepareLatentsStep(ModularPipelineBlocks):
block_state.height = block_state.height or components.default_height
block_state.width = block_state.width or components.default_width
block_state.device = components._execution_device
block_state.dtype = torch.bfloat16 # TODO: okay to hardcode this?
block_state.num_channels_latents = components.num_channels_latents
self.check_inputs(components, block_state)
batch_size = block_state.batch_size * block_state.num_images_per_prompt
block_state.latents, block_state.latent_image_ids = self.prepare_latents(
block_state.latents = self.prepare_latents(
components,
batch_size,
block_state.num_channels_latents,
@@ -608,82 +435,124 @@ class FluxPrepareLatentsStep(ModularPipelineBlocks):
class FluxImg2ImgPrepareLatentsStep(ModularPipelineBlocks):
model_name = "flux"
@property
def expected_components(self) -> List[ComponentSpec]:
return [ComponentSpec("vae", AutoencoderKL), ComponentSpec("scheduler", FlowMatchEulerDiscreteScheduler)]
@property
def description(self) -> str:
return "Step that prepares the latents for the image-to-image generation process"
return "Step that adds noise to image latents for image-to-image. Should be run after `set_timesteps`,"
" `prepare_latents`. Both noise and image latents should already be patchified."
@property
def inputs(self) -> List[Tuple[str, Any]]:
def expected_components(self) -> List[ComponentSpec]:
return [ComponentSpec("scheduler", FlowMatchEulerDiscreteScheduler)]
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("height", type_hint=int),
InputParam("width", type_hint=int),
InputParam("latents", type_hint=Optional[torch.Tensor]),
InputParam("num_images_per_prompt", type_hint=int, default=1),
InputParam("generator"),
InputParam(
"image_latents",
name="latents",
required=True,
type_hint=torch.Tensor,
description="The latents representing the reference image for image-to-image/inpainting generation. Can be generated in vae_encode step.",
description="The initial random noised, can be generated in prepare latent step.",
),
InputParam(
"latent_timestep",
name="image_latents",
required=True,
type_hint=torch.Tensor,
description="The timestep that represents the initial noise level for image-to-image/inpainting generation. Can be generated in set_timesteps step.",
description="The image latents to use for the denoising process. Can be generated in vae encoder and packed in input step.",
),
InputParam(
"batch_size",
name="timesteps",
required=True,
type_hint=int,
description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can be generated in input step.",
type_hint=torch.Tensor,
description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
),
InputParam("dtype", required=True, type_hint=torch.dtype, description="The dtype of the model inputs"),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
"latents", type_hint=torch.Tensor, description="The initial latents to use for the denoising process"
),
OutputParam(
"latent_image_ids",
name="initial_noise",
type_hint=torch.Tensor,
description="IDs computed from the image sequence needed for RoPE",
description="The initial random noised used for inpainting denoising.",
),
]
@staticmethod
def check_inputs(image_latents, latents):
if image_latents.shape[0] != latents.shape[0]:
raise ValueError(
f"`image_latents` must have have same batch size as `latents`, but got {image_latents.shape[0]} and {latents.shape[0]}"
)
if image_latents.ndim != 3:
raise ValueError(f"`image_latents` must have 3 dimensions (patchified), but got {image_latents.ndim}")
@torch.no_grad()
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
block_state.device = components._execution_device
block_state.dtype = torch.bfloat16 # TODO: okay to hardcode this?
block_state.num_channels_latents = components.num_channels_latents
block_state.dtype = block_state.dtype if block_state.dtype is not None else components.vae.dtype
block_state.device = components._execution_device
self.check_inputs(image_latents=block_state.image_latents, latents=block_state.latents)
# TODO: implement `check_inputs`
batch_size = block_state.batch_size * block_state.num_images_per_prompt
if block_state.latents is None:
block_state.latents, block_state.latent_image_ids = prepare_latents_img2img(
components.vae,
components.scheduler,
block_state.image_latents,
block_state.latent_timestep,
batch_size,
block_state.num_channels_latents,
block_state.height,
block_state.width,
block_state.dtype,
block_state.device,
block_state.generator,
)
# prepare latent timestep
latent_timestep = block_state.timesteps[:1].repeat(block_state.latents.shape[0])
# make copy of initial_noise
block_state.initial_noise = block_state.latents
# scale noise
block_state.latents = components.scheduler.scale_noise(
block_state.image_latents, latent_timestep, block_state.latents
)
self.set_block_state(state, block_state)
return components, state
class FluxRoPEInputsStep(ModularPipelineBlocks):
model_name = "flux"
@property
def description(self) -> str:
return "Step that prepares the RoPE inputs for the denoising process. Should be placed after text encoder and latent preparation steps."
@property
def inputs(self) -> List[InputParam]:
return [
InputParam(name="height", required=True),
InputParam(name="width", required=True),
InputParam(name="prompt_embeds"),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
name="txt_ids",
kwargs_type="denoiser_input_fields",
type_hint=List[int],
description="The sequence lengths of the prompt embeds, used for RoPE calculation.",
),
OutputParam(
name="img_ids",
kwargs_type="denoiser_input_fields",
type_hint=List[int],
description="The sequence lengths of the image latents, used for RoPE calculation.",
),
]
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
prompt_embeds = block_state.prompt_embeds
device, dtype = prompt_embeds.device, prompt_embeds.dtype
block_state.txt_ids = torch.zeros(prompt_embeds.shape[1], 3).to(
device=prompt_embeds.device, dtype=prompt_embeds.dtype
)
height = 2 * (int(block_state.height) // (components.vae_scale_factor * 2))
width = 2 * (int(block_state.width) // (components.vae_scale_factor * 2))
block_state.img_ids = FluxPipeline._prepare_latent_image_ids(None, height // 2, width // 2, device, dtype)
self.set_block_state(state, block_state)

View File

@@ -76,18 +76,17 @@ class FluxLoopDenoiser(ModularPipelineBlocks):
description="Pooled prompt embeddings",
),
InputParam(
"text_ids",
"txt_ids",
required=True,
type_hint=torch.Tensor,
description="IDs computed from text sequence needed for RoPE",
),
InputParam(
"latent_image_ids",
"img_ids",
required=True,
type_hint=torch.Tensor,
description="IDs computed from image sequence needed for RoPE",
),
# TODO: guidance
]
@torch.no_grad()
@@ -101,8 +100,8 @@ class FluxLoopDenoiser(ModularPipelineBlocks):
encoder_hidden_states=block_state.prompt_embeds,
pooled_projections=block_state.pooled_prompt_embeds,
joint_attention_kwargs=block_state.joint_attention_kwargs,
txt_ids=block_state.text_ids,
img_ids=block_state.latent_image_ids,
txt_ids=block_state.txt_ids,
img_ids=block_state.img_ids,
return_dict=False,
)[0]
block_state.noise_pred = noise_pred
@@ -195,9 +194,6 @@ class FluxDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
block_state.num_warmup_steps = max(
len(block_state.timesteps) - block_state.num_inference_steps * components.scheduler.order, 0
)
# We set the index here to remove DtoH sync, helpful especially during compilation.
# Check out more details here: https://github.com/huggingface/diffusers/pull/11696
components.scheduler.set_begin_index(0)
with self.progress_bar(total=block_state.num_inference_steps) as progress_bar:
for i, t in enumerate(block_state.timesteps):
components, block_state = self.loop_step(components, block_state, i=i, t=t)

View File

@@ -25,7 +25,7 @@ from ...loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL
from ...utils import USE_PEFT_BACKEND, is_ftfy_available, logging, scale_lora_layers, unscale_lora_layers
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
from .modular_pipeline import FluxModularPipeline
@@ -67,89 +67,148 @@ def retrieve_latents(
raise AttributeError("Could not access latents of provided encoder_output")
class FluxVaeEncoderStep(ModularPipelineBlocks):
model_name = "flux"
def encode_vae_image(vae: AutoencoderKL, image: torch.Tensor, generator: torch.Generator, sample_mode="sample"):
if isinstance(generator, list):
image_latents = [
retrieve_latents(vae.encode(image[i : i + 1]), generator=generator[i], sample_mode=sample_mode)
for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(vae.encode(image), generator=generator, sample_mode=sample_mode)
image_latents = (image_latents - vae.config.shift_factor) * vae.config.scaling_factor
return image_latents
class FluxProcessImagesInputStep(ModularPipelineBlocks):
model_name = "Flux"
@property
def description(self) -> str:
return "Vae Encoder step that encode the input image into a latent representation"
return "Image Preprocess step. Resizing is needed in Flux Kontext (will be implemented later.)"
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("vae", AutoencoderKL),
ComponentSpec(
"image_processor",
VaeImageProcessor,
config=FrozenDict({"vae_scale_factor": 16, "vae_latent_channels": 16}),
config=FrozenDict({"vae_scale_factor": 16}),
default_creation_method="from_config",
),
]
@property
def inputs(self) -> List[InputParam]:
return [InputParam("resized_image"), InputParam("image"), InputParam("height"), InputParam("width")]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
InputParam("image", required=True),
InputParam("height"),
InputParam("width"),
InputParam("generator"),
InputParam("dtype", type_hint=torch.dtype, description="Data type of model tensor inputs"),
InputParam(
"preprocess_kwargs",
type_hint=Optional[dict],
description="A kwargs dictionary that if specified is passed along to the `ImageProcessor` as defined under `self.image_processor` in [diffusers.image_processor.VaeImageProcessor]",
),
OutputParam(name="processed_image"),
]
@staticmethod
def check_inputs(height, width, vae_scale_factor):
if height is not None and height % (vae_scale_factor * 2) != 0:
raise ValueError(f"Height must be divisible by {vae_scale_factor * 2} but is {height}")
if width is not None and width % (vae_scale_factor * 2) != 0:
raise ValueError(f"Width must be divisible by {vae_scale_factor * 2} but is {width}")
@torch.no_grad()
def __call__(self, components: FluxModularPipeline, state: PipelineState):
block_state = self.get_block_state(state)
if block_state.resized_image is None and block_state.image is None:
raise ValueError("`resized_image` and `image` cannot be None at the same time")
if block_state.resized_image is None:
image = block_state.image
self.check_inputs(
height=block_state.height, width=block_state.width, vae_scale_factor=components.vae_scale_factor
)
height = block_state.height or components.default_height
width = block_state.width or components.default_width
else:
width, height = block_state.resized_image[0].size
image = block_state.resized_image
block_state.processed_image = components.image_processor.preprocess(image=image, height=height, width=width)
self.set_block_state(state, block_state)
return components, state
class FluxVaeEncoderDynamicStep(ModularPipelineBlocks):
model_name = "flux"
def __init__(
self,
input_name: str = "processed_image",
output_name: str = "image_latents",
):
"""Initialize a VAE encoder step for converting images to latent representations.
Both the input and output names are configurable so this block can be configured to process to different image
inputs (e.g., "processed_image" -> "image_latents", "processed_control_image" -> "control_image_latents").
Args:
input_name (str, optional): Name of the input image tensor. Defaults to "processed_image".
Examples: "processed_image" or "processed_control_image"
output_name (str, optional): Name of the output latent tensor. Defaults to "image_latents".
Examples: "image_latents" or "control_image_latents"
Examples:
# Basic usage with default settings (includes image processor): # FluxImageVaeEncoderDynamicStep()
# Custom input/output names for control image: # FluxImageVaeEncoderDynamicStep(
input_name="processed_control_image", output_name="control_image_latents"
)
"""
self._image_input_name = input_name
self._image_latents_output_name = output_name
super().__init__()
@property
def description(self) -> str:
return f"Dynamic VAE Encoder step that converts {self._image_input_name} into latent representations {self._image_latents_output_name}.\n"
@property
def expected_components(self) -> List[ComponentSpec]:
components = [ComponentSpec("vae", AutoencoderKL)]
return components
@property
def inputs(self) -> List[InputParam]:
inputs = [InputParam(self._image_input_name, required=True), InputParam("generator")]
return inputs
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
"image_latents",
self._image_latents_output_name,
type_hint=torch.Tensor,
description="The latents representing the reference image for image-to-image/inpainting generation",
description="The latents representing the reference image",
)
]
@staticmethod
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image with self.vae->vae
def _encode_vae_image(vae, image: torch.Tensor, generator: torch.Generator):
if isinstance(generator, list):
image_latents = [
retrieve_latents(vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(vae.encode(image), generator=generator)
image_latents = (image_latents - vae.config.shift_factor) * vae.config.scaling_factor
return image_latents
@torch.no_grad()
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
block_state.preprocess_kwargs = block_state.preprocess_kwargs or {}
block_state.device = components._execution_device
block_state.dtype = block_state.dtype if block_state.dtype is not None else components.vae.dtype
block_state.image = components.image_processor.preprocess(
block_state.image, height=block_state.height, width=block_state.width, **block_state.preprocess_kwargs
)
block_state.image = block_state.image.to(device=block_state.device, dtype=block_state.dtype)
device = components._execution_device
dtype = components.vae.dtype
block_state.batch_size = block_state.image.shape[0]
image = getattr(block_state, self._image_input_name)
image = image.to(device=device, dtype=dtype)
# if generator is a list, make sure the length of it matches the length of images (both should be batch_size)
if isinstance(block_state.generator, list) and len(block_state.generator) != block_state.batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(block_state.generator)}, but requested an effective batch"
f" size of {block_state.batch_size}. Make sure the batch size matches the length of the generators."
)
block_state.image_latents = self._encode_vae_image(
components.vae, image=block_state.image, generator=block_state.generator
)
# Encode image into latents
image_latents = encode_vae_image(image=image, vae=components.vae, generator=block_state.generator)
setattr(block_state, self._image_latents_output_name, image_latents)
self.set_block_state(state, block_state)
@@ -161,7 +220,7 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
@property
def description(self) -> str:
return "Text Encoder step that generate text_embeddings to guide the video generation"
return "Text Encoder step that generate text_embeddings to guide the image generation"
@property
def expected_components(self) -> List[ComponentSpec]:
@@ -172,15 +231,12 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
ComponentSpec("tokenizer_2", T5TokenizerFast),
]
@property
def expected_configs(self) -> List[ConfigSpec]:
return []
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("prompt"),
InputParam("prompt_2"),
InputParam("max_sequence_length", type_hint=int, default=512, required=False),
InputParam("joint_attention_kwargs"),
]
@@ -189,19 +245,16 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
return [
OutputParam(
"prompt_embeds",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="text embeddings used to guide the image generation",
),
OutputParam(
"pooled_prompt_embeds",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="pooled text embeddings used to guide the image generation",
),
OutputParam(
"text_ids",
type_hint=torch.Tensor,
description="ids from the text sequence for RoPE",
),
]
@staticmethod
@@ -212,16 +265,10 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
@staticmethod
def _get_t5_prompt_embeds(
components,
prompt: Union[str, List[str]],
num_images_per_prompt: int,
max_sequence_length: int,
device: torch.device,
components, prompt: Union[str, List[str]], max_sequence_length: int, device: torch.device
):
dtype = components.text_encoder_2.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
if isinstance(components, TextualInversionLoaderMixin):
prompt = components.maybe_convert_prompt(prompt, components.tokenizer_2)
@@ -247,23 +294,11 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
prompt_embeds = components.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds
@staticmethod
def _get_clip_prompt_embeds(
components,
prompt: Union[str, List[str]],
num_images_per_prompt: int,
device: torch.device,
):
def _get_clip_prompt_embeds(components, prompt: Union[str, List[str]], device: torch.device):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
if isinstance(components, TextualInversionLoaderMixin):
prompt = components.maybe_convert_prompt(prompt, components.tokenizer)
@@ -293,10 +328,6 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
prompt_embeds = prompt_embeds.pooler_output
prompt_embeds = prompt_embeds.to(dtype=components.text_encoder.dtype, device=device)
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
return prompt_embeds
@staticmethod
@@ -305,34 +336,11 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
prompt: Union[str, List[str]],
prompt_2: Union[str, List[str]],
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
max_sequence_length: int = 512,
lora_scale: Optional[float] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in all text-encoders
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
device = device or components._execution_device
# set lora scale so that monkey patched LoRA
@@ -357,12 +365,10 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
components,
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
)
prompt_embeds = FluxTextEncoderStep._get_t5_prompt_embeds(
components,
prompt=prompt_2,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
)
@@ -377,10 +383,7 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(components.text_encoder_2, lora_scale)
dtype = components.text_encoder.dtype if components.text_encoder is not None else torch.bfloat16
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
return prompt_embeds, pooled_prompt_embeds, text_ids
return prompt_embeds, pooled_prompt_embeds
@torch.no_grad()
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
@@ -396,14 +399,14 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
if block_state.joint_attention_kwargs is not None
else None
)
(block_state.prompt_embeds, block_state.pooled_prompt_embeds, block_state.text_ids) = self.encode_prompt(
block_state.prompt_embeds, block_state.pooled_prompt_embeds = self.encode_prompt(
components,
prompt=block_state.prompt,
prompt_2=None,
prompt_embeds=None,
pooled_prompt_embeds=None,
device=block_state.device,
num_images_per_prompt=1, # TODO: hardcoded for now.
max_sequence_length=block_state.max_sequence_length,
lora_scale=block_state.text_encoder_lora_scale,
)

View File

@@ -0,0 +1,236 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import torch
from ...pipelines import FluxPipeline
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import InputParam, OutputParam
# TODO: consider making these common utilities for modular if they are not pipeline-specific.
from ..qwenimage.inputs import calculate_dimension_from_latents, repeat_tensor_to_batch_size
from .modular_pipeline import FluxModularPipeline
class FluxTextInputStep(ModularPipelineBlocks):
model_name = "flux"
@property
def description(self) -> str:
return (
"Text input processing step that standardizes text embeddings for the pipeline.\n"
"This step:\n"
" 1. Determines `batch_size` and `dtype` based on `prompt_embeds`\n"
" 2. Ensures all text embeddings have consistent batch sizes (batch_size * num_images_per_prompt)"
)
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("num_images_per_prompt", default=1),
InputParam(
"prompt_embeds",
required=True,
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="Pre-generated text embeddings. Can be generated from text_encoder step.",
),
InputParam(
"pooled_prompt_embeds",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="Pre-generated pooled text embeddings. Can be generated from text_encoder step.",
),
# TODO: support negative embeddings?
]
@property
def intermediate_outputs(self) -> List[str]:
return [
OutputParam(
"batch_size",
type_hint=int,
description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt",
),
OutputParam(
"dtype",
type_hint=torch.dtype,
description="Data type of model tensor inputs (determined by `prompt_embeds`)",
),
OutputParam(
"prompt_embeds",
type_hint=torch.Tensor,
kwargs_type="denoiser_input_fields",
description="text embeddings used to guide the image generation",
),
OutputParam(
"pooled_prompt_embeds",
type_hint=torch.Tensor,
kwargs_type="denoiser_input_fields",
description="pooled text embeddings used to guide the image generation",
),
# TODO: support negative embeddings?
]
def check_inputs(self, components, block_state):
if block_state.prompt_embeds is not None and block_state.pooled_prompt_embeds is not None:
if block_state.prompt_embeds.shape[0] != block_state.pooled_prompt_embeds.shape[0]:
raise ValueError(
"`prompt_embeds` and `pooled_prompt_embeds` must have the same batch size when passed directly, but"
f" got: `prompt_embeds` {block_state.prompt_embeds.shape} != `pooled_prompt_embeds`"
f" {block_state.pooled_prompt_embeds.shape}."
)
@torch.no_grad()
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
# TODO: consider adding negative embeddings?
block_state = self.get_block_state(state)
self.check_inputs(components, block_state)
block_state.batch_size = block_state.prompt_embeds.shape[0]
block_state.dtype = block_state.prompt_embeds.dtype
_, seq_len, _ = block_state.prompt_embeds.shape
block_state.prompt_embeds = block_state.prompt_embeds.repeat(1, block_state.num_images_per_prompt, 1)
block_state.prompt_embeds = block_state.prompt_embeds.view(
block_state.batch_size * block_state.num_images_per_prompt, seq_len, -1
)
self.set_block_state(state, block_state)
return components, state
# Adapted from `QwenImageInputsDynamicStep`
class FluxInputsDynamicStep(ModularPipelineBlocks):
model_name = "flux"
def __init__(
self,
image_latent_inputs: List[str] = ["image_latents"],
additional_batch_inputs: List[str] = [],
):
if not isinstance(image_latent_inputs, list):
image_latent_inputs = [image_latent_inputs]
if not isinstance(additional_batch_inputs, list):
additional_batch_inputs = [additional_batch_inputs]
self._image_latent_inputs = image_latent_inputs
self._additional_batch_inputs = additional_batch_inputs
super().__init__()
@property
def description(self) -> str:
# Functionality section
summary_section = (
"Input processing step that:\n"
" 1. For image latent inputs: Updates height/width if None, patchifies latents, and expands batch size\n"
" 2. For additional batch inputs: Expands batch dimensions to match final batch size"
)
# Inputs info
inputs_info = ""
if self._image_latent_inputs or self._additional_batch_inputs:
inputs_info = "\n\nConfigured inputs:"
if self._image_latent_inputs:
inputs_info += f"\n - Image latent inputs: {self._image_latent_inputs}"
if self._additional_batch_inputs:
inputs_info += f"\n - Additional batch inputs: {self._additional_batch_inputs}"
# Placement guidance
placement_section = "\n\nThis block should be placed after the encoder steps and the text input step."
return summary_section + inputs_info + placement_section
@property
def inputs(self) -> List[InputParam]:
inputs = [
InputParam(name="num_images_per_prompt", default=1),
InputParam(name="batch_size", required=True),
InputParam(name="height"),
InputParam(name="width"),
]
# Add image latent inputs
for image_latent_input_name in self._image_latent_inputs:
inputs.append(InputParam(name=image_latent_input_name))
# Add additional batch inputs
for input_name in self._additional_batch_inputs:
inputs.append(InputParam(name=input_name))
return inputs
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(name="image_height", type_hint=int, description="The height of the image latents"),
OutputParam(name="image_width", type_hint=int, description="The width of the image latents"),
]
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
# Process image latent inputs (height/width calculation, patchify, and batch expansion)
for image_latent_input_name in self._image_latent_inputs:
image_latent_tensor = getattr(block_state, image_latent_input_name)
if image_latent_tensor is None:
continue
# 1. Calculate height/width from latents
height, width = calculate_dimension_from_latents(image_latent_tensor, components.vae_scale_factor)
block_state.height = block_state.height or height
block_state.width = block_state.width or width
if not hasattr(block_state, "image_height"):
block_state.image_height = height
if not hasattr(block_state, "image_width"):
block_state.image_width = width
# 2. Patchify the image latent tensor
# TODO: Implement patchifier for Flux.
latent_height, latent_width = image_latent_tensor.shape[2:]
image_latent_tensor = FluxPipeline._pack_latents(
image_latent_tensor, block_state.batch_size, image_latent_tensor.shape[1], latent_height, latent_width
)
# 3. Expand batch size
image_latent_tensor = repeat_tensor_to_batch_size(
input_name=image_latent_input_name,
input_tensor=image_latent_tensor,
num_images_per_prompt=block_state.num_images_per_prompt,
batch_size=block_state.batch_size,
)
setattr(block_state, image_latent_input_name, image_latent_tensor)
# Process additional batch inputs (only batch expansion)
for input_name in self._additional_batch_inputs:
input_tensor = getattr(block_state, input_name)
if input_tensor is None:
continue
# Only expand batch size
input_tensor = repeat_tensor_to_batch_size(
input_name=input_name,
input_tensor=input_tensor,
num_images_per_prompt=block_state.num_images_per_prompt,
batch_size=block_state.batch_size,
)
setattr(block_state, input_name, input_tensor)
self.set_block_state(state, block_state)
return components, state

View File

@@ -18,21 +18,41 @@ from ..modular_pipeline_utils import InsertableDict
from .before_denoise import (
FluxImg2ImgPrepareLatentsStep,
FluxImg2ImgSetTimestepsStep,
FluxInputStep,
FluxPrepareLatentsStep,
FluxRoPEInputsStep,
FluxSetTimestepsStep,
)
from .decoders import FluxDecodeStep
from .denoise import FluxDenoiseStep
from .encoders import FluxTextEncoderStep, FluxVaeEncoderStep
from .encoders import FluxProcessImagesInputStep, FluxTextEncoderStep, FluxVaeEncoderDynamicStep
from .inputs import FluxInputsDynamicStep, FluxTextInputStep
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# vae encoder (run before before_denoise)
FluxImg2ImgVaeEncoderBlocks = InsertableDict(
[
("preprocess", FluxProcessImagesInputStep()),
("encode", FluxVaeEncoderDynamicStep()),
]
)
class FluxImg2ImgVaeEncoderStep(SequentialPipelineBlocks):
model_name = "flux"
block_classes = FluxImg2ImgVaeEncoderBlocks.values()
block_names = FluxImg2ImgVaeEncoderBlocks.keys()
@property
def description(self) -> str:
return "Vae encoder step that preprocess andencode the image inputs into their latent representations."
class FluxAutoVaeEncoderStep(AutoPipelineBlocks):
block_classes = [FluxVaeEncoderStep]
block_classes = [FluxImg2ImgVaeEncoderStep]
block_names = ["img2img"]
block_trigger_inputs = ["image"]
@@ -41,52 +61,55 @@ class FluxAutoVaeEncoderStep(AutoPipelineBlocks):
return (
"Vae encoder step that encode the image inputs into their latent representations.\n"
+ "This is an auto pipeline block that works for img2img tasks.\n"
+ " - `FluxVaeEncoderStep` (img2img) is used when only `image` is provided."
+ " - if `image` is provided, step will be skipped."
+ " - `FluxImg2ImgVaeEncoderStep` (img2img) is used when only `image` is provided."
+ " - if `image` is not provided, step will be skipped."
)
# before_denoise: text2img, img2img
class FluxBeforeDenoiseStep(SequentialPipelineBlocks):
block_classes = [
FluxInputStep,
FluxPrepareLatentsStep,
FluxSetTimestepsStep,
# before_denoise: text2img
FluxBeforeDenoiseBlocks = InsertableDict(
[
("prepare_latents", FluxPrepareLatentsStep()),
("set_timesteps", FluxSetTimestepsStep()),
("prepare_rope_inputs", FluxRoPEInputsStep()),
]
block_names = ["input", "prepare_latents", "set_timesteps"]
)
class FluxBeforeDenoiseStep(SequentialPipelineBlocks):
block_classes = FluxBeforeDenoiseBlocks.values()
block_names = FluxBeforeDenoiseBlocks.keys()
@property
def description(self):
return (
"Before denoise step that prepare the inputs for the denoise step.\n"
+ "This is a sequential pipeline blocks:\n"
+ " - `FluxInputStep` is used to adjust the batch size of the model inputs\n"
+ " - `FluxPrepareLatentsStep` is used to prepare the latents\n"
+ " - `FluxSetTimestepsStep` is used to set the timesteps\n"
)
return "Before denoise step that prepares the inputs for the denoise step in text-to-image generation."
# before_denoise: img2img
FluxImg2ImgBeforeDenoiseBlocks = InsertableDict(
[
("prepare_latents", FluxPrepareLatentsStep()),
("set_timesteps", FluxImg2ImgSetTimestepsStep()),
("prepare_img2img_latents", FluxImg2ImgPrepareLatentsStep()),
("prepare_rope_inputs", FluxRoPEInputsStep()),
]
)
class FluxImg2ImgBeforeDenoiseStep(SequentialPipelineBlocks):
block_classes = [FluxInputStep, FluxImg2ImgSetTimestepsStep, FluxImg2ImgPrepareLatentsStep]
block_names = ["input", "set_timesteps", "prepare_latents"]
block_classes = FluxImg2ImgBeforeDenoiseBlocks.values()
block_names = FluxImg2ImgBeforeDenoiseBlocks.keys()
@property
def description(self):
return (
"Before denoise step that prepare the inputs for the denoise step for img2img task.\n"
+ "This is a sequential pipeline blocks:\n"
+ " - `FluxInputStep` is used to adjust the batch size of the model inputs\n"
+ " - `FluxImg2ImgSetTimestepsStep` is used to set the timesteps\n"
+ " - `FluxImg2ImgPrepareLatentsStep` is used to prepare the latents\n"
)
return "Before denoise step that prepare the inputs for the denoise step for img2img task."
# before_denoise: all task (text2img, img2img)
class FluxAutoBeforeDenoiseStep(AutoPipelineBlocks):
block_classes = [FluxBeforeDenoiseStep, FluxImg2ImgBeforeDenoiseStep]
block_names = ["text2image", "img2img"]
block_trigger_inputs = [None, "image_latents"]
block_classes = [FluxImg2ImgBeforeDenoiseStep, FluxBeforeDenoiseStep]
block_names = ["img2img", "text2image"]
block_trigger_inputs = ["image_latents", None]
@property
def description(self):
@@ -113,7 +136,7 @@ class FluxAutoDenoiseStep(AutoPipelineBlocks):
)
# decode: all task (text2img, img2img, inpainting)
# decode: all task (text2img, img2img)
class FluxAutoDecodeStep(AutoPipelineBlocks):
block_classes = [FluxDecodeStep]
block_names = ["non-inpaint"]
@@ -124,16 +147,73 @@ class FluxAutoDecodeStep(AutoPipelineBlocks):
return "Decode step that decode the denoised latents into image outputs.\n - `FluxDecodeStep`"
# text2image
class FluxAutoBlocks(SequentialPipelineBlocks):
block_classes = [
FluxTextEncoderStep,
FluxAutoVaeEncoderStep,
FluxAutoBeforeDenoiseStep,
FluxAutoDenoiseStep,
FluxAutoDecodeStep,
# inputs: text2image/img2img
FluxImg2ImgBlocks = InsertableDict(
[("text_inputs", FluxTextInputStep()), ("additional_inputs", FluxInputsDynamicStep())]
)
class FluxImg2ImgInputStep(SequentialPipelineBlocks):
model_name = "flux"
block_classes = FluxImg2ImgBlocks.values()
block_names = FluxImg2ImgBlocks.keys()
@property
def description(self):
return "Input step that prepares the inputs for the img2img denoising step. It:\n"
" - make sure the text embeddings have consistent batch size as well as the additional inputs (`image_latents`).\n"
" - update height/width based `image_latents`, patchify `image_latents`."
class FluxImageAutoInputStep(AutoPipelineBlocks):
block_classes = [FluxImg2ImgInputStep, FluxTextInputStep]
block_names = ["img2img", "text2image"]
block_trigger_inputs = ["image_latents", None]
@property
def description(self):
return (
"Input step that standardize the inputs for the denoising step, e.g. make sure inputs have consistent batch size, and patchified. \n"
" This is an auto pipeline block that works for text2image/img2img tasks.\n"
+ " - `FluxImg2ImgInputStep` (img2img) is used when `image_latents` is provided.\n"
+ " - `FluxTextInputStep` (text2image) is used when `image_latents` are not provided.\n"
)
class FluxCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "flux"
block_classes = [FluxImageAutoInputStep, FluxAutoBeforeDenoiseStep, FluxAutoDenoiseStep]
block_names = ["input", "before_denoise", "denoise"]
@property
def description(self):
return (
"Core step that performs the denoising process. \n"
+ " - `FluxImageAutoInputStep` (input) standardizes the inputs for the denoising step.\n"
+ " - `FluxAutoBeforeDenoiseStep` (before_denoise) prepares the inputs for the denoising step.\n"
+ " - `FluxAutoDenoiseStep` (denoise) iteratively denoises the latents.\n"
+ "This step supports text-to-image and image-to-image tasks for Flux:\n"
+ " - for image-to-image generation, you need to provide `image_latents`\n"
+ " - for text-to-image generation, all you need to provide is prompt embeddings."
)
# Auto blocks (text2image and img2img)
AUTO_BLOCKS = InsertableDict(
[
("text_encoder", FluxTextEncoderStep()),
("image_encoder", FluxAutoVaeEncoderStep()),
("denoise", FluxCoreDenoiseStep()),
("decode", FluxDecodeStep()),
]
block_names = ["text_encoder", "image_encoder", "before_denoise", "denoise", "decoder"]
)
class FluxAutoBlocks(SequentialPipelineBlocks):
model_name = "flux"
block_classes = AUTO_BLOCKS.values()
block_names = AUTO_BLOCKS.keys()
@property
def description(self):
@@ -146,36 +226,28 @@ class FluxAutoBlocks(SequentialPipelineBlocks):
TEXT2IMAGE_BLOCKS = InsertableDict(
[
("text_encoder", FluxTextEncoderStep),
("input", FluxInputStep),
("prepare_latents", FluxPrepareLatentsStep),
("set_timesteps", FluxSetTimestepsStep),
("denoise", FluxDenoiseStep),
("decode", FluxDecodeStep),
("text_encoder", FluxTextEncoderStep()),
("input", FluxTextInputStep()),
("prepare_latents", FluxPrepareLatentsStep()),
("set_timesteps", FluxSetTimestepsStep()),
("prepare_rope_inputs", FluxRoPEInputsStep()),
("denoise", FluxDenoiseStep()),
("decode", FluxDecodeStep()),
]
)
IMAGE2IMAGE_BLOCKS = InsertableDict(
[
("text_encoder", FluxTextEncoderStep),
("image_encoder", FluxVaeEncoderStep),
("input", FluxInputStep),
("set_timesteps", FluxImg2ImgSetTimestepsStep),
("prepare_latents", FluxImg2ImgPrepareLatentsStep),
("denoise", FluxDenoiseStep),
("decode", FluxDecodeStep),
("text_encoder", FluxTextEncoderStep()),
("vae_encoder", FluxVaeEncoderDynamicStep()),
("input", FluxImg2ImgInputStep()),
("prepare_latents", FluxPrepareLatentsStep()),
("set_timesteps", FluxImg2ImgSetTimestepsStep()),
("prepare_img2img_latents", FluxImg2ImgPrepareLatentsStep()),
("prepare_rope_inputs", FluxRoPEInputsStep()),
("denoise", FluxDenoiseStep()),
("decode", FluxDecodeStep()),
]
)
AUTO_BLOCKS = InsertableDict(
[
("text_encoder", FluxTextEncoderStep),
("image_encoder", FluxAutoVaeEncoderStep),
("before_denoise", FluxAutoBeforeDenoiseStep),
("denoise", FluxAutoDenoiseStep),
("decode", FluxAutoDecodeStep),
]
)
ALL_BLOCKS = {"text2image": TEXT2IMAGE_BLOCKS, "img2img": IMAGE2IMAGE_BLOCKS, "auto": AUTO_BLOCKS}

View File

@@ -59,6 +59,7 @@ MODULAR_PIPELINE_MAPPING = OrderedDict(
("flux", "FluxModularPipeline"),
("qwenimage", "QwenImageModularPipeline"),
("qwenimage-edit", "QwenImageEditModularPipeline"),
("qwenimage-edit-plus", "QwenImageEditPlusModularPipeline"),
]
)
@@ -1628,7 +1629,8 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
blocks = ModularPipelineBlocks.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
except EnvironmentError:
except EnvironmentError as e:
logger.debug(f"EnvironmentError: {e}")
blocks = None
cache_dir = kwargs.pop("cache_dir", None)

View File

@@ -29,13 +29,20 @@ else:
"EDIT_AUTO_BLOCKS",
"EDIT_BLOCKS",
"EDIT_INPAINT_BLOCKS",
"EDIT_PLUS_AUTO_BLOCKS",
"EDIT_PLUS_BLOCKS",
"IMAGE2IMAGE_BLOCKS",
"INPAINT_BLOCKS",
"TEXT2IMAGE_BLOCKS",
"QwenImageAutoBlocks",
"QwenImageEditAutoBlocks",
"QwenImageEditPlusAutoBlocks",
]
_import_structure["modular_pipeline"] = [
"QwenImageEditModularPipeline",
"QwenImageEditPlusModularPipeline",
"QwenImageModularPipeline",
]
_import_structure["modular_pipeline"] = ["QwenImageEditModularPipeline", "QwenImageModularPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
@@ -54,13 +61,20 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
EDIT_AUTO_BLOCKS,
EDIT_BLOCKS,
EDIT_INPAINT_BLOCKS,
EDIT_PLUS_AUTO_BLOCKS,
EDIT_PLUS_BLOCKS,
IMAGE2IMAGE_BLOCKS,
INPAINT_BLOCKS,
TEXT2IMAGE_BLOCKS,
QwenImageAutoBlocks,
QwenImageEditAutoBlocks,
QwenImageEditPlusAutoBlocks,
)
from .modular_pipeline import (
QwenImageEditModularPipeline,
QwenImageEditPlusModularPipeline,
QwenImageModularPipeline,
)
from .modular_pipeline import QwenImageEditModularPipeline, QwenImageModularPipeline
else:
import sys

View File

@@ -203,7 +203,6 @@ class QwenImagePrepareLatentsStep(ModularPipelineBlocks):
block_state.latents = components.pachifier.pack_latents(block_state.latents)
self.set_block_state(state, block_state)
return components, state
@@ -571,7 +570,7 @@ class QwenImageEditRoPEInputsStep(ModularPipelineBlocks):
@property
def description(self) -> str:
return "Step that prepares the RoPE inputs for denoising process. This is used in QwenImage Edit. Should be place after prepare_latents step"
return "Step that prepares the RoPE inputs for denoising process. This is used in QwenImage Edit. Should be placed after prepare_latents step"
@property
def inputs(self) -> List[InputParam]:

View File

@@ -128,6 +128,61 @@ def get_qwen_prompt_embeds_edit(
return prompt_embeds, encoder_attention_mask
def get_qwen_prompt_embeds_edit_plus(
text_encoder,
processor,
prompt: Union[str, List[str]] = None,
image: Optional[Union[torch.Tensor, List[PIL.Image.Image], PIL.Image.Image]] = None,
prompt_template_encode: str = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n",
img_template_encode: str = "Picture {}: <|vision_start|><|image_pad|><|vision_end|>",
prompt_template_encode_start_idx: int = 64,
device: Optional[torch.device] = None,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
if isinstance(image, list):
base_img_prompt = ""
for i, img in enumerate(image):
base_img_prompt += img_template_encode.format(i + 1)
elif image is not None:
base_img_prompt = img_template_encode.format(1)
else:
base_img_prompt = ""
template = prompt_template_encode
drop_idx = prompt_template_encode_start_idx
txt = [template.format(base_img_prompt + e) for e in prompt]
model_inputs = processor(
text=txt,
images=image,
padding=True,
return_tensors="pt",
).to(device)
outputs = text_encoder(
input_ids=model_inputs.input_ids,
attention_mask=model_inputs.attention_mask,
pixel_values=model_inputs.pixel_values,
image_grid_thw=model_inputs.image_grid_thw,
output_hidden_states=True,
)
hidden_states = outputs.hidden_states[-1]
split_hidden_states = _extract_masked_hidden(hidden_states, model_inputs.attention_mask)
split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
max_seq_len = max([e.size(0) for e in split_hidden_states])
prompt_embeds = torch.stack(
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
)
encoder_attention_mask = torch.stack(
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
)
prompt_embeds = prompt_embeds.to(device=device)
return prompt_embeds, encoder_attention_mask
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
@@ -266,6 +321,83 @@ class QwenImageEditResizeDynamicStep(ModularPipelineBlocks):
return components, state
class QwenImageEditPlusResizeDynamicStep(QwenImageEditResizeDynamicStep):
model_name = "qwenimage"
def __init__(
self,
input_name: str = "image",
output_name: str = "resized_image",
vae_image_output_name: str = "vae_image",
):
"""Create a configurable step for resizing images to the target area (1024 * 1024) while maintaining the aspect ratio.
This block resizes an input image or a list input images and exposes the resized result under configurable
input and output names. Use this when you need to wire the resize step to different image fields (e.g.,
"image", "control_image")
Args:
input_name (str, optional): Name of the image field to read from the
pipeline state. Defaults to "image".
output_name (str, optional): Name of the resized image field to write
back to the pipeline state. Defaults to "resized_image".
vae_image_output_name (str, optional): Name of the image field
to write back to the pipeline state. This is used by the VAE encoder step later on. QwenImage Edit Plus
processes the input image(s) differently for the VL and the VAE.
"""
if not isinstance(input_name, str) or not isinstance(output_name, str):
raise ValueError(
f"input_name and output_name must be strings but are {type(input_name)} and {type(output_name)}"
)
self.condition_image_size = 384 * 384
self._image_input_name = input_name
self._resized_image_output_name = output_name
self._vae_image_output_name = vae_image_output_name
super().__init__()
@property
def intermediate_outputs(self) -> List[OutputParam]:
return super().intermediate_outputs + [
OutputParam(
name=self._vae_image_output_name,
type_hint=List[PIL.Image.Image],
description="The images to be processed which will be further used by the VAE encoder.",
),
]
@torch.no_grad()
def __call__(self, components: QwenImageModularPipeline, state: PipelineState):
block_state = self.get_block_state(state)
images = getattr(block_state, self._image_input_name)
if not is_valid_image_imagelist(images):
raise ValueError(f"Images must be image or list of images but are {type(images)}")
if (
not isinstance(images, torch.Tensor)
and isinstance(images, PIL.Image.Image)
and not isinstance(images, list)
):
images = [images]
# TODO (sayakpaul): revisit this when the inputs are `torch.Tensor`s
condition_images = []
vae_images = []
for img in images:
image_width, image_height = img.size
condition_width, condition_height, _ = calculate_dimensions(
self.condition_image_size, image_width / image_height
)
condition_images.append(components.image_resize_processor.resize(img, condition_height, condition_width))
vae_images.append(img)
setattr(block_state, self._resized_image_output_name, condition_images)
setattr(block_state, self._vae_image_output_name, vae_images)
self.set_block_state(state, block_state)
return components, state
class QwenImageTextEncoderStep(ModularPipelineBlocks):
model_name = "qwenimage"
@@ -511,6 +643,61 @@ class QwenImageEditTextEncoderStep(ModularPipelineBlocks):
return components, state
class QwenImageEditPlusTextEncoderStep(QwenImageEditTextEncoderStep):
model_name = "qwenimage"
@property
def expected_configs(self) -> List[ConfigSpec]:
return [
ConfigSpec(
name="prompt_template_encode",
default="<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n",
),
ConfigSpec(
name="img_template_encode",
default="Picture {}: <|vision_start|><|image_pad|><|vision_end|>",
),
ConfigSpec(name="prompt_template_encode_start_idx", default=64),
]
@torch.no_grad()
def __call__(self, components: QwenImageModularPipeline, state: PipelineState):
block_state = self.get_block_state(state)
self.check_inputs(block_state.prompt, block_state.negative_prompt)
device = components._execution_device
block_state.prompt_embeds, block_state.prompt_embeds_mask = get_qwen_prompt_embeds_edit_plus(
components.text_encoder,
components.processor,
prompt=block_state.prompt,
image=block_state.resized_image,
prompt_template_encode=components.config.prompt_template_encode,
img_template_encode=components.config.img_template_encode,
prompt_template_encode_start_idx=components.config.prompt_template_encode_start_idx,
device=device,
)
if components.requires_unconditional_embeds:
negative_prompt = block_state.negative_prompt or " "
block_state.negative_prompt_embeds, block_state.negative_prompt_embeds_mask = (
get_qwen_prompt_embeds_edit_plus(
components.text_encoder,
components.processor,
prompt=negative_prompt,
image=block_state.resized_image,
prompt_template_encode=components.config.prompt_template_encode,
img_template_encode=components.config.img_template_encode,
prompt_template_encode_start_idx=components.config.prompt_template_encode_start_idx,
device=device,
)
)
self.set_block_state(state, block_state)
return components, state
class QwenImageInpaintProcessImagesInputStep(ModularPipelineBlocks):
model_name = "qwenimage"
@@ -612,12 +799,7 @@ class QwenImageProcessImagesInputStep(ModularPipelineBlocks):
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("resized_image"),
InputParam("image"),
InputParam("height"),
InputParam("width"),
]
return [InputParam("resized_image"), InputParam("image"), InputParam("height"), InputParam("width")]
@property
def intermediate_outputs(self) -> List[OutputParam]:
@@ -661,6 +843,47 @@ class QwenImageProcessImagesInputStep(ModularPipelineBlocks):
return components, state
class QwenImageEditPlusProcessImagesInputStep(QwenImageProcessImagesInputStep):
model_name = "qwenimage-edit-plus"
vae_image_size = 1024 * 1024
@property
def description(self) -> str:
return "Image Preprocess step for QwenImage Edit Plus. Unlike QwenImage Edit, QwenImage Edit Plus doesn't use the same resized image for further preprocessing."
@property
def inputs(self) -> List[InputParam]:
return [InputParam("vae_image"), InputParam("image"), InputParam("height"), InputParam("width")]
@torch.no_grad()
def __call__(self, components: QwenImageModularPipeline, state: PipelineState):
block_state = self.get_block_state(state)
if block_state.vae_image is None and block_state.image is None:
raise ValueError("`vae_image` and `image` cannot be None at the same time")
if block_state.vae_image is None:
image = block_state.image
self.check_inputs(
height=block_state.height, width=block_state.width, vae_scale_factor=components.vae_scale_factor
)
height = block_state.height or components.default_height
width = block_state.width or components.default_width
block_state.processed_image = components.image_processor.preprocess(
image=image, height=height, width=width
)
else:
width, height = block_state.vae_image[0].size
image = block_state.vae_image
block_state.processed_image = components.image_processor.preprocess(
image=image, height=height, width=width
)
self.set_block_state(state, block_state)
return components, state
class QwenImageVaeEncoderDynamicStep(ModularPipelineBlocks):
model_name = "qwenimage"
@@ -738,7 +961,6 @@ class QwenImageVaeEncoderDynamicStep(ModularPipelineBlocks):
dtype=dtype,
latent_channels=components.num_channels_latents,
)
setattr(block_state, self._image_latents_output_name, image_latents)
self.set_block_state(state, block_state)

View File

@@ -37,6 +37,9 @@ from .denoise import (
)
from .encoders import (
QwenImageControlNetVaeEncoderStep,
QwenImageEditPlusProcessImagesInputStep,
QwenImageEditPlusResizeDynamicStep,
QwenImageEditPlusTextEncoderStep,
QwenImageEditResizeDynamicStep,
QwenImageEditTextEncoderStep,
QwenImageInpaintProcessImagesInputStep,
@@ -872,7 +875,151 @@ class QwenImageEditAutoBlocks(SequentialPipelineBlocks):
)
# 3. all block presets supported in QwenImage & QwenImage-Edit
#################### QwenImage Edit Plus #####################
# 3. QwenImage-Edit Plus
## 3.1 QwenImage-Edit Plus / edit
#### QwenImage-Edit Plus vl encoder: take both image and text prompts
QwenImageEditPlusVLEncoderBlocks = InsertableDict(
[
("resize", QwenImageEditPlusResizeDynamicStep()),
("encode", QwenImageEditPlusTextEncoderStep()),
]
)
class QwenImageEditPlusVLEncoderStep(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = QwenImageEditPlusVLEncoderBlocks.values()
block_names = QwenImageEditPlusVLEncoderBlocks.keys()
@property
def description(self) -> str:
return "QwenImage-Edit Plus VL encoder step that encode the image an text prompts together."
#### QwenImage-Edit Plus vae encoder
QwenImageEditPlusVaeEncoderBlocks = InsertableDict(
[
("resize", QwenImageEditPlusResizeDynamicStep()), # edit plus has a different resize step
("preprocess", QwenImageEditPlusProcessImagesInputStep()), # vae_image -> processed_image
("encode", QwenImageVaeEncoderDynamicStep()), # processed_image -> image_latents
]
)
class QwenImageEditPlusVaeEncoderStep(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = QwenImageEditPlusVaeEncoderBlocks.values()
block_names = QwenImageEditPlusVaeEncoderBlocks.keys()
@property
def description(self) -> str:
return "Vae encoder step that encode the image inputs into their latent representations."
#### QwenImage Edit Plus presets
EDIT_PLUS_BLOCKS = InsertableDict(
[
("text_encoder", QwenImageEditPlusVLEncoderStep()),
("vae_encoder", QwenImageEditPlusVaeEncoderStep()),
("input", QwenImageEditInputStep()),
("prepare_latents", QwenImagePrepareLatentsStep()),
("set_timesteps", QwenImageSetTimestepsStep()),
("prepare_rope_inputs", QwenImageEditRoPEInputsStep()),
("denoise", QwenImageEditDenoiseStep()),
("decode", QwenImageDecodeStep()),
]
)
# auto before_denoise step for edit tasks
class QwenImageEditPlusAutoBeforeDenoiseStep(AutoPipelineBlocks):
model_name = "qwenimage-edit-plus"
block_classes = [QwenImageEditBeforeDenoiseStep]
block_names = ["edit"]
block_trigger_inputs = ["image_latents"]
@property
def description(self):
return (
"Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step.\n"
+ "This is an auto pipeline block that works for edit (img2img) task.\n"
+ " - `QwenImageEditBeforeDenoiseStep` (edit) is used when `image_latents` is provided and `processed_mask_image` is not provided.\n"
+ " - if `image_latents` is not provided, step will be skipped."
)
## 3.2 QwenImage-Edit Plus/auto encoders
class QwenImageEditPlusAutoVaeEncoderStep(AutoPipelineBlocks):
block_classes = [
QwenImageEditPlusVaeEncoderStep,
]
block_names = ["edit"]
block_trigger_inputs = ["image"]
@property
def description(self):
return (
"Vae encoder step that encode the image inputs into their latent representations. \n"
" This is an auto pipeline block that works for edit task.\n"
+ " - `QwenImageEditPlusVaeEncoderStep` (edit) is used when `image` is provided.\n"
+ " - if `image` is not provided, step will be skipped."
)
## 3.3 QwenImage-Edit/auto blocks & presets
class QwenImageEditPlusCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "qwenimage-edit-plus"
block_classes = [
QwenImageEditAutoInputStep,
QwenImageEditPlusAutoBeforeDenoiseStep,
QwenImageEditAutoDenoiseStep,
]
block_names = ["input", "before_denoise", "denoise"]
@property
def description(self):
return (
"Core step that performs the denoising process. \n"
+ " - `QwenImageEditAutoInputStep` (input) standardizes the inputs for the denoising step.\n"
+ " - `QwenImageEditPlusAutoBeforeDenoiseStep` (before_denoise) prepares the inputs for the denoising step.\n"
+ " - `QwenImageEditAutoDenoiseStep` (denoise) iteratively denoises the latents.\n\n"
+ "This step support edit (img2img) workflow for QwenImage Edit Plus:\n"
+ " - When `image_latents` is provided, it will be used for edit (img2img) task.\n"
)
EDIT_PLUS_AUTO_BLOCKS = InsertableDict(
[
("text_encoder", QwenImageEditPlusVLEncoderStep()),
("vae_encoder", QwenImageEditPlusAutoVaeEncoderStep()),
("denoise", QwenImageEditPlusCoreDenoiseStep()),
("decode", QwenImageAutoDecodeStep()),
]
)
class QwenImageEditPlusAutoBlocks(SequentialPipelineBlocks):
model_name = "qwenimage-edit-plus"
block_classes = EDIT_PLUS_AUTO_BLOCKS.values()
block_names = EDIT_PLUS_AUTO_BLOCKS.keys()
@property
def description(self):
return (
"Auto Modular pipeline for edit (img2img) and edit tasks using QwenImage-Edit Plus.\n"
+ "- for edit (img2img) generation, you need to provide `image`\n"
)
# 3. all block presets supported in QwenImage, QwenImage-Edit, QwenImage-Edit Plus
ALL_BLOCKS = {
@@ -880,8 +1027,10 @@ ALL_BLOCKS = {
"img2img": IMAGE2IMAGE_BLOCKS,
"edit": EDIT_BLOCKS,
"edit_inpaint": EDIT_INPAINT_BLOCKS,
"edit_plus": EDIT_PLUS_BLOCKS,
"inpaint": INPAINT_BLOCKS,
"controlnet": CONTROLNET_BLOCKS,
"auto": AUTO_BLOCKS,
"edit_auto": EDIT_AUTO_BLOCKS,
"edit_plus_auto": EDIT_PLUS_AUTO_BLOCKS,
}

View File

@@ -196,3 +196,13 @@ class QwenImageEditModularPipeline(ModularPipeline, QwenImageLoraLoaderMixin):
requires_unconditional_embeds = self.guider._enabled and self.guider.num_conditions > 1
return requires_unconditional_embeds
class QwenImageEditPlusModularPipeline(QwenImageEditModularPipeline):
"""
A ModularPipeline for QwenImage-Edit Plus.
> [!WARNING] > This is an experimental feature and is likely to change in the future.
"""
default_blocks_name = "QwenImageEditPlusAutoBlocks"

View File

@@ -95,6 +95,7 @@ from .qwenimage import (
QwenImageControlNetPipeline,
QwenImageEditInpaintPipeline,
QwenImageEditPipeline,
QwenImageEditPlusPipeline,
QwenImageImg2ImgPipeline,
QwenImageInpaintPipeline,
QwenImagePipeline,
@@ -186,6 +187,7 @@ AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict(
("flux-kontext", FluxKontextPipeline),
("qwenimage", QwenImageImg2ImgPipeline),
("qwenimage-edit", QwenImageEditPipeline),
("qwenimage-edit-plus", QwenImageEditPlusPipeline),
]
)

View File

@@ -838,6 +838,9 @@ def load_sub_model(
else:
loading_kwargs["low_cpu_mem_usage"] = False
if is_transformers_model and is_transformers_version(">=", "4.57.0"):
loading_kwargs.pop("offload_state_dict")
if (
quantization_config is not None
and isinstance(quantization_config, PipelineQuantizationConfig)

View File

@@ -77,6 +77,36 @@ class QwenImageEditModularPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class QwenImageEditPlusAutoBlocks(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class QwenImageEditPlusModularPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class QwenImageModularPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -21,6 +21,7 @@ import operator as op
import os
import sys
from collections import OrderedDict, defaultdict
from functools import lru_cache as cache
from itertools import chain
from types import ModuleType
from typing import Any, Tuple, Union
@@ -673,6 +674,7 @@ def compare_versions(library_or_version: Union[str, Version], operation: str, re
# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L338
@cache
def is_torch_version(operation: str, version: str):
"""
Compares the current PyTorch version to a given reference with an operation.
@@ -686,6 +688,7 @@ def is_torch_version(operation: str, version: str):
return compare_versions(parse(_torch_version), operation, version)
@cache
def is_torch_xla_version(operation: str, version: str):
"""
Compares the current torch_xla version to a given reference with an operation.
@@ -701,6 +704,7 @@ def is_torch_xla_version(operation: str, version: str):
return compare_versions(parse(_torch_xla_version), operation, version)
@cache
def is_transformers_version(operation: str, version: str):
"""
Compares the current Transformers version to a given reference with an operation.
@@ -716,6 +720,7 @@ def is_transformers_version(operation: str, version: str):
return compare_versions(parse(_transformers_version), operation, version)
@cache
def is_hf_hub_version(operation: str, version: str):
"""
Compares the current Hugging Face Hub version to a given reference with an operation.
@@ -731,6 +736,7 @@ def is_hf_hub_version(operation: str, version: str):
return compare_versions(parse(_hf_hub_version), operation, version)
@cache
def is_accelerate_version(operation: str, version: str):
"""
Compares the current Accelerate version to a given reference with an operation.
@@ -746,6 +752,7 @@ def is_accelerate_version(operation: str, version: str):
return compare_versions(parse(_accelerate_version), operation, version)
@cache
def is_peft_version(operation: str, version: str):
"""
Compares the current PEFT version to a given reference with an operation.
@@ -761,6 +768,7 @@ def is_peft_version(operation: str, version: str):
return compare_versions(parse(_peft_version), operation, version)
@cache
def is_bitsandbytes_version(operation: str, version: str):
"""
Args:
@@ -775,6 +783,7 @@ def is_bitsandbytes_version(operation: str, version: str):
return compare_versions(parse(_bitsandbytes_version), operation, version)
@cache
def is_gguf_version(operation: str, version: str):
"""
Compares the current Accelerate version to a given reference with an operation.
@@ -790,6 +799,7 @@ def is_gguf_version(operation: str, version: str):
return compare_versions(parse(_gguf_version), operation, version)
@cache
def is_torchao_version(operation: str, version: str):
"""
Compares the current torchao version to a given reference with an operation.
@@ -805,6 +815,7 @@ def is_torchao_version(operation: str, version: str):
return compare_versions(parse(_torchao_version), operation, version)
@cache
def is_k_diffusion_version(operation: str, version: str):
"""
Compares the current k-diffusion version to a given reference with an operation.
@@ -820,6 +831,7 @@ def is_k_diffusion_version(operation: str, version: str):
return compare_versions(parse(_k_diffusion_version), operation, version)
@cache
def is_optimum_quanto_version(operation: str, version: str):
"""
Compares the current Accelerate version to a given reference with an operation.
@@ -835,6 +847,7 @@ def is_optimum_quanto_version(operation: str, version: str):
return compare_versions(parse(_optimum_quanto_version), operation, version)
@cache
def is_nvidia_modelopt_version(operation: str, version: str):
"""
Compares the current Nvidia ModelOpt version to a given reference with an operation.
@@ -850,6 +863,7 @@ def is_nvidia_modelopt_version(operation: str, version: str):
return compare_versions(parse(_nvidia_modelopt_version), operation, version)
@cache
def is_xformers_version(operation: str, version: str):
"""
Compares the current xformers version to a given reference with an operation.
@@ -865,6 +879,7 @@ def is_xformers_version(operation: str, version: str):
return compare_versions(parse(_xformers_version), operation, version)
@cache
def is_sageattention_version(operation: str, version: str):
"""
Compares the current sageattention version to a given reference with an operation.
@@ -880,6 +895,7 @@ def is_sageattention_version(operation: str, version: str):
return compare_versions(parse(_sageattention_version), operation, version)
@cache
def is_flash_attn_version(operation: str, version: str):
"""
Compares the current flash-attention version to a given reference with an operation.