1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[LoRA] minor fix for load_lora_weights() for Flux and a test (#11595)

* fix peft delete adapters for flux.

* add test

* empty commit
This commit is contained in:
Sayak Paul
2025-05-22 15:44:45 +05:30
committed by GitHub
parent c36f8487df
commit a5f4cc7f84
2 changed files with 49 additions and 2 deletions

View File

@@ -2545,14 +2545,13 @@ class FluxLoraLoaderMixin(LoraBaseMixin):
if unexpected_modules:
logger.debug(f"Found unexpected modules: {unexpected_modules}. These will be ignored.")
is_peft_loaded = getattr(transformer, "peft_config", None) is not None
for k in lora_module_names:
if k in unexpected_modules:
continue
base_param_name = (
f"{k.replace(prefix, '')}.base_layer.weight"
if is_peft_loaded and f"{k.replace(prefix, '')}.base_layer.weight" in transformer_state_dict
if f"{k.replace(prefix, '')}.base_layer.weight" in transformer_state_dict
else f"{k.replace(prefix, '')}.weight"
)
base_weight_param = transformer_state_dict[base_param_name]

View File

@@ -2149,3 +2149,51 @@ class PeftLoraLoaderMixinTests:
_, _, inputs = self.get_dummy_inputs(with_generator=False)
pipe(**inputs, generator=torch.manual_seed(0))[0]
def test_inference_load_delete_load_adapters(self):
"Tests if `load_lora_weights()` -> `delete_adapters()` -> `load_lora_weights()` works."
for scheduler_cls in self.scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
if "text_encoder" in self.pipeline_class._lora_loadable_modules:
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
)
denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
denoiser.add_adapter(denoiser_lora_config)
self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
if self.has_two_text_encoders or self.has_three_text_encoders:
lora_loadable_components = self.pipeline_class._lora_loadable_modules
if "text_encoder_2" in lora_loadable_components:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
with tempfile.TemporaryDirectory() as tmpdirname:
modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
self.pipeline_class.save_lora_weights(save_directory=tmpdirname, **lora_state_dicts)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
# First, delete adapter and compare.
pipe.delete_adapters(pipe.get_active_adapters()[0])
output_no_adapter = pipe(**inputs, generator=torch.manual_seed(0))[0]
self.assertFalse(np.allclose(output_adapter_1, output_no_adapter, atol=1e-3, rtol=1e-3))
self.assertTrue(np.allclose(output_no_lora, output_no_adapter, atol=1e-3, rtol=1e-3))
# Then load adapter and compare.
pipe.load_lora_weights(tmpdirname)
output_lora_loaded = pipe(**inputs, generator=torch.manual_seed(0))[0]
self.assertTrue(np.allclose(output_adapter_1, output_lora_loaded, atol=1e-3, rtol=1e-3))