1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

Merge branch 'main' into bria-fibo

This commit is contained in:
galbria
2025-10-28 10:17:18 +02:00
committed by GitHub
7 changed files with 32 additions and 18 deletions

View File

@@ -20,7 +20,7 @@ from transformers import Gemma2Model, GemmaTokenizer
from diffusers import AutoencoderDC, FlowMatchEulerDiscreteScheduler, SanaPipeline, SanaTransformer2DModel
from ..testing_utils import floats_tensor, require_peft_backend
from ..testing_utils import IS_GITHUB_ACTIONS, floats_tensor, require_peft_backend
sys.path.append(".")
@@ -136,3 +136,7 @@ class SanaLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
@unittest.skip("Text encoder LoRA is not supported in SANA.")
def test_simple_inference_with_text_lora_save_load(self):
pass
@unittest.skipIf(IS_GITHUB_ACTIONS, reason="Skipping test inside GitHub Actions environment")
def test_layerwise_casting_inference_denoiser(self):
return super().test_layerwise_casting_inference_denoiser()

View File

@@ -17,11 +17,7 @@ import unittest
from diffusers import AutoencoderDC
from ...testing_utils import (
enable_full_determinism,
floats_tensor,
torch_device,
)
from ...testing_utils import IS_GITHUB_ACTIONS, enable_full_determinism, floats_tensor, torch_device
from ..test_modeling_common import ModelTesterMixin
from .testing_utils import AutoencoderTesterMixin
@@ -82,3 +78,7 @@ class AutoencoderDCTests(ModelTesterMixin, AutoencoderTesterMixin, unittest.Test
init_dict = self.get_autoencoder_dc_config()
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skipIf(IS_GITHUB_ACTIONS, reason="Skipping test inside GitHub Actions environment")
def test_layerwise_casting_inference(self):
super().test_layerwise_casting_inference()

View File

@@ -23,6 +23,7 @@ from transformers import Gemma2Config, Gemma2Model, GemmaTokenizer
from diffusers import AutoencoderDC, FlowMatchEulerDiscreteScheduler, SanaPipeline, SanaTransformer2DModel
from ...testing_utils import (
IS_GITHUB_ACTIONS,
backend_empty_cache,
enable_full_determinism,
require_torch_accelerator,
@@ -304,6 +305,10 @@ class SanaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
# Requires higher tolerance as model seems very sensitive to dtype
super().test_float16_inference(expected_max_diff=0.08)
@unittest.skipIf(IS_GITHUB_ACTIONS, reason="Skipping test inside GitHub Actions environment")
def test_layerwise_casting_inference(self):
super().test_layerwise_casting_inference()
@slow
@require_torch_accelerator

View File

@@ -28,10 +28,7 @@ from diffusers import (
)
from diffusers.utils.torch_utils import randn_tensor
from ...testing_utils import (
enable_full_determinism,
torch_device,
)
from ...testing_utils import IS_GITHUB_ACTIONS, enable_full_determinism, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np
@@ -326,3 +323,7 @@ class SanaControlNetPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def test_float16_inference(self):
# Requires higher tolerance as model seems very sensitive to dtype
super().test_float16_inference(expected_max_diff=0.08)
@unittest.skipIf(IS_GITHUB_ACTIONS, reason="Skipping test inside GitHub Actions environment")
def test_layerwise_casting_inference(self):
super().test_layerwise_casting_inference()

View File

@@ -21,10 +21,7 @@ from transformers import Gemma2Config, Gemma2Model, GemmaTokenizer
from diffusers import AutoencoderDC, SanaSprintPipeline, SanaTransformer2DModel, SCMScheduler
from ...testing_utils import (
enable_full_determinism,
torch_device,
)
from ...testing_utils import IS_GITHUB_ACTIONS, enable_full_determinism, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np
@@ -300,3 +297,7 @@ class SanaSprintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def test_float16_inference(self):
# Requires higher tolerance as model seems very sensitive to dtype
super().test_float16_inference(expected_max_diff=0.08)
@unittest.skipIf(IS_GITHUB_ACTIONS, reason="Skipping test inside GitHub Actions environment")
def test_layerwise_casting_inference(self):
super().test_layerwise_casting_inference()

View File

@@ -22,10 +22,7 @@ from transformers import Gemma2Config, Gemma2Model, GemmaTokenizer
from diffusers import AutoencoderDC, SanaSprintImg2ImgPipeline, SanaTransformer2DModel, SCMScheduler
from diffusers.utils.torch_utils import randn_tensor
from ...testing_utils import (
enable_full_determinism,
torch_device,
)
from ...testing_utils import IS_GITHUB_ACTIONS, enable_full_determinism, torch_device
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
@@ -312,3 +309,7 @@ class SanaSprintImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
def test_float16_inference(self):
# Requires higher tolerance as model seems very sensitive to dtype
super().test_float16_inference(expected_max_diff=0.08)
@unittest.skipIf(IS_GITHUB_ACTIONS, reason="Skipping test inside GitHub Actions environment")
def test_layerwise_casting_inference(self):
super().test_layerwise_casting_inference()

View File

@@ -63,6 +63,8 @@ else:
IS_CUDA_SYSTEM = False
IS_XPU_SYSTEM = False
IS_GITHUB_ACTIONS = os.getenv("GITHUB_ACTIONS") == "true" and os.getenv("DIFFUSERS_IS_CI") == "yes"
global_rng = random.Random()
logger = get_logger(__name__)