mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
undo img2vid changes
This commit is contained in:
@@ -172,9 +172,6 @@ accelerate launch --gpu_ids $GPU_IDS examples/cogvideo/train_cogvideox_lora.py \
|
||||
--report_to wandb
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> At the time of adding support for CogVideoX-LoRA training, the memory required by the training script, with VAE tiling and LoRA rank 64, is ~52 GB (as tested with the simplest `accelerate config` setting) and ~46 GB (as tested with the simplest `accelerate config` DeepSpeed ZeRO-2 training settings).
|
||||
|
||||
To better track our training experiments, we're using the following flags in the command above:
|
||||
* `--report_to wandb` will ensure the training runs are tracked on Weights and Biases. To use it, be sure to install `wandb` with `pip install wandb`.
|
||||
* `validation_prompt` and `validation_epochs` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected.
|
||||
|
||||
@@ -15,7 +15,7 @@
|
||||
|
||||
import inspect
|
||||
import math
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import PIL
|
||||
import torch
|
||||
@@ -27,7 +27,10 @@ from ...models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
|
||||
from ...models.embeddings import get_3d_rotary_pos_embed
|
||||
from ...pipelines.pipeline_utils import DiffusionPipeline
|
||||
from ...schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
||||
from ...utils import logging, replace_example_docstring
|
||||
from ...utils import (
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ...video_processor import VideoProcessor
|
||||
from .pipeline_output import CogVideoXPipelineOutput
|
||||
@@ -544,10 +547,6 @@ class CogVideoXImageToVideoPipeline(DiffusionPipeline):
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def attention_kwargs(self):
|
||||
return self._attention_kwargs
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
@@ -574,7 +573,6 @@ class CogVideoXImageToVideoPipeline(DiffusionPipeline):
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: str = "pil",
|
||||
return_dict: bool = True,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[
|
||||
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
||||
] = None,
|
||||
@@ -638,10 +636,6 @@ class CogVideoXImageToVideoPipeline(DiffusionPipeline):
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
||||
of a plain tuple.
|
||||
attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
@@ -687,7 +681,6 @@ class CogVideoXImageToVideoPipeline(DiffusionPipeline):
|
||||
negative_prompt_embeds,
|
||||
)
|
||||
self._guidance_scale = guidance_scale
|
||||
self._attention_kwargs = attention_kwargs
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Default call parameters
|
||||
|
||||
Reference in New Issue
Block a user