mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
update
This commit is contained in:
@@ -99,9 +99,9 @@ class SDXLModularTests:
|
||||
|
||||
assert image.shape == expected_image_shape
|
||||
|
||||
assert np.abs(image_slice.flatten() - expected_slice).max() < expected_max_diff, (
|
||||
"Image Slice does not match expected slice"
|
||||
)
|
||||
assert (
|
||||
np.abs(image_slice.flatten() - expected_slice).max() < expected_max_diff
|
||||
), "Image Slice does not match expected slice"
|
||||
|
||||
|
||||
class SDXLModularIPAdapterTests:
|
||||
@@ -114,20 +114,20 @@ class SDXLModularIPAdapterTests:
|
||||
parameters = blocks.input_names
|
||||
|
||||
assert issubclass(self.pipeline_class, ModularIPAdapterMixin)
|
||||
assert "ip_adapter_image" in parameters, (
|
||||
"`ip_adapter_image` argument must be supported by the `__call__` method"
|
||||
)
|
||||
assert (
|
||||
"ip_adapter_image" in parameters
|
||||
), "`ip_adapter_image` argument must be supported by the `__call__` method"
|
||||
assert "ip_adapter" in blocks.sub_blocks, "pipeline must contain an IPAdapter block"
|
||||
|
||||
_ = blocks.sub_blocks.pop("ip_adapter")
|
||||
parameters = blocks.input_names
|
||||
intermediate_parameters = blocks.intermediate_input_names
|
||||
assert "ip_adapter_image" not in parameters, (
|
||||
"`ip_adapter_image` argument must be removed from the `__call__` method"
|
||||
)
|
||||
assert "ip_adapter_image_embeds" not in intermediate_parameters, (
|
||||
"`ip_adapter_image_embeds` argument must be supported by the `__call__` method"
|
||||
)
|
||||
assert (
|
||||
"ip_adapter_image" not in parameters
|
||||
), "`ip_adapter_image` argument must be removed from the `__call__` method"
|
||||
assert (
|
||||
"ip_adapter_image_embeds" not in intermediate_parameters
|
||||
), "`ip_adapter_image_embeds` argument must be supported by the `__call__` method"
|
||||
|
||||
def _get_dummy_image_embeds(self, cross_attention_dim: int = 32):
|
||||
return torch.randn((1, 1, cross_attention_dim), device=torch_device)
|
||||
@@ -203,9 +203,9 @@ class SDXLModularIPAdapterTests:
|
||||
max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
|
||||
max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()
|
||||
|
||||
assert max_diff_without_adapter_scale < expected_max_diff, (
|
||||
"Output without ip-adapter must be same as normal inference"
|
||||
)
|
||||
assert (
|
||||
max_diff_without_adapter_scale < expected_max_diff
|
||||
), "Output without ip-adapter must be same as normal inference"
|
||||
assert max_diff_with_adapter_scale > 1e-2, "Output with ip-adapter must be different from normal inference"
|
||||
|
||||
# 2. Multi IP-Adapter test cases
|
||||
@@ -235,12 +235,12 @@ class SDXLModularIPAdapterTests:
|
||||
output_without_multi_adapter_scale - output_without_adapter
|
||||
).max()
|
||||
max_diff_with_multi_adapter_scale = np.abs(output_with_multi_adapter_scale - output_without_adapter).max()
|
||||
assert max_diff_without_multi_adapter_scale < expected_max_diff, (
|
||||
"Output without multi-ip-adapter must be same as normal inference"
|
||||
)
|
||||
assert max_diff_with_multi_adapter_scale > 1e-2, (
|
||||
"Output with multi-ip-adapter scale must be different from normal inference"
|
||||
)
|
||||
assert (
|
||||
max_diff_without_multi_adapter_scale < expected_max_diff
|
||||
), "Output without multi-ip-adapter must be same as normal inference"
|
||||
assert (
|
||||
max_diff_with_multi_adapter_scale > 1e-2
|
||||
), "Output with multi-ip-adapter scale must be different from normal inference"
|
||||
|
||||
|
||||
class SDXLModularControlNetTests:
|
||||
@@ -253,9 +253,9 @@ class SDXLModularControlNetTests:
|
||||
parameters = blocks.input_names
|
||||
|
||||
assert "control_image" in parameters, "`control_image` argument must be supported by the `__call__` method"
|
||||
assert "controlnet_conditioning_scale" in parameters, (
|
||||
"`controlnet_conditioning_scale` argument must be supported by the `__call__` method"
|
||||
)
|
||||
assert (
|
||||
"controlnet_conditioning_scale" in parameters
|
||||
), "`controlnet_conditioning_scale` argument must be supported by the `__call__` method"
|
||||
|
||||
def _modify_inputs_for_controlnet_test(self, inputs: Dict[str, Any]):
|
||||
controlnet_embedder_scale_factor = 2
|
||||
@@ -301,9 +301,9 @@ class SDXLModularControlNetTests:
|
||||
max_diff_without_controlnet_scale = np.abs(output_without_controlnet_scale - output_without_controlnet).max()
|
||||
max_diff_with_controlnet_scale = np.abs(output_with_controlnet_scale - output_without_controlnet).max()
|
||||
|
||||
assert max_diff_without_controlnet_scale < expected_max_diff, (
|
||||
"Output without controlnet must be same as normal inference"
|
||||
)
|
||||
assert (
|
||||
max_diff_without_controlnet_scale < expected_max_diff
|
||||
), "Output without controlnet must be same as normal inference"
|
||||
assert max_diff_with_controlnet_scale > 1e-2, "Output with controlnet must be different from normal inference"
|
||||
|
||||
def test_controlnet_cfg(self):
|
||||
@@ -383,26 +383,6 @@ class SDXLModularPipelineFastTests(
|
||||
def test_inference_batch_single_identical(self):
|
||||
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
|
||||
|
||||
@require_torch_accelerator
|
||||
def test_stable_diffusion_xl_offloads(self):
|
||||
pipes = []
|
||||
sd_pipe = self.get_pipeline().to(torch_device)
|
||||
pipes.append(sd_pipe)
|
||||
|
||||
cm = ComponentsManager()
|
||||
cm.enable_auto_cpu_offload(device=torch_device)
|
||||
sd_pipe = self.get_pipeline(components_manager=cm)
|
||||
pipes.append(sd_pipe)
|
||||
|
||||
image_slices = []
|
||||
for pipe in pipes:
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
image = pipe(**inputs, output="images")
|
||||
|
||||
image_slices.append(image[0, -3:, -3:, -1].flatten())
|
||||
|
||||
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
|
||||
|
||||
def test_stable_diffusion_xl_save_from_pretrained(self):
|
||||
pipes = []
|
||||
sd_pipe = self.get_pipeline().to(torch_device)
|
||||
|
||||
@@ -320,11 +320,40 @@ class ModularPipelineTesterMixin:
|
||||
assert images.shape[0] == batch_size * num_images_per_prompt
|
||||
|
||||
@require_accelerator
|
||||
def test_components_auto_cpu_offload(self):
|
||||
def test_components_auto_cpu_offload_inference_consistent(self):
|
||||
base_pipe = self.get_pipeline().to(torch_device)
|
||||
for component in base_pipe.components:
|
||||
assert component.device == torch_device
|
||||
|
||||
cm = ComponentsManager()
|
||||
cm.enable_auto_cpu_offload(device=torch_device)
|
||||
offload_pipe = self.get_pipeline(components_manager=cm)
|
||||
|
||||
image_slices = []
|
||||
for pipe in [base_pipe, offload_pipe]:
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
image = pipe(**inputs, output="images")
|
||||
|
||||
image_slices.append(image[0, -3:, -3:, -1].flatten())
|
||||
|
||||
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
|
||||
|
||||
def test_save_from_pretrained(self):
|
||||
pipes = []
|
||||
base_pipe = self.get_pipeline().to(torch_device)
|
||||
pipes.append(base_pipe)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
base_pipe.save_pretrained(tmpdirname)
|
||||
pipe = ModularPipeline.from_pretrained(tmpdirname).to(torch_device)
|
||||
pipe.load_default_components(torch_dtype=torch.float32)
|
||||
pipe.to(torch_device)
|
||||
|
||||
pipes.append(pipe)
|
||||
|
||||
image_slices = []
|
||||
for pipe in pipes:
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
image = pipe(**inputs, output="images")
|
||||
|
||||
image_slices.append(image[0, -3:, -3:, -1].flatten())
|
||||
|
||||
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
|
||||
|
||||
Reference in New Issue
Block a user