mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Improve docstrings and type hints in scheduling_cosine_dpmsolver_multistep.py (#12936)
* docs: improve docstring scheduling_cosine_dpmsolver_multistep.py * Update src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * fix --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
This commit is contained in:
@@ -15,7 +15,7 @@
|
||||
# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver and https://github.com/NVlabs/edm
|
||||
|
||||
import math
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from typing import List, Literal, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -36,27 +36,30 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
methods the library implements for all schedulers such as loading and saving.
|
||||
|
||||
Args:
|
||||
sigma_min (`float`, *optional*, defaults to 0.3):
|
||||
sigma_min (`float`, defaults to `0.3`):
|
||||
Minimum noise magnitude in the sigma schedule. This was set to 0.3 in Stable Audio Open [1].
|
||||
sigma_max (`float`, *optional*, defaults to 500):
|
||||
sigma_max (`float`, defaults to `500`):
|
||||
Maximum noise magnitude in the sigma schedule. This was set to 500 in Stable Audio Open [1].
|
||||
sigma_data (`float`, *optional*, defaults to 1.0):
|
||||
sigma_data (`float`, defaults to `1.0`):
|
||||
The standard deviation of the data distribution. This is set to 1.0 in Stable Audio Open [1].
|
||||
sigma_schedule (`str`, *optional*, defaults to `exponential`):
|
||||
Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
|
||||
(https://huggingface.co/papers/2206.00364). Other acceptable value is "exponential". The exponential
|
||||
schedule was incorporated in this model: https://huggingface.co/stabilityai/cosxl.
|
||||
num_train_timesteps (`int`, defaults to 1000):
|
||||
sigma_schedule (`str`, defaults to `"exponential"`):
|
||||
Sigma schedule to compute the `sigmas`. Must be one of `"exponential"` or `"karras"`. The exponential
|
||||
schedule was incorporated in [stabilityai/cosxl](https://huggingface.co/stabilityai/cosxl). The Karras
|
||||
schedule is introduced in the [EDM](https://huggingface.co/papers/2206.00364) paper.
|
||||
num_train_timesteps (`int`, defaults to `1000`):
|
||||
The number of diffusion steps to train the model.
|
||||
solver_order (`int`, defaults to 2):
|
||||
solver_order (`int`, defaults to `2`):
|
||||
The DPMSolver order which can be `1` or `2`. It is recommended to use `solver_order=2`.
|
||||
prediction_type (`str`, defaults to `v_prediction`, *optional*):
|
||||
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
||||
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
||||
prediction_type (`str`, defaults to `"v_prediction"`):
|
||||
Prediction type of the scheduler function. Must be one of `"epsilon"` (predicts the noise of the diffusion
|
||||
process), `"sample"` (directly predicts the noisy sample), or `"v_prediction"` (see section 2.4 of [Imagen
|
||||
Video](https://huggingface.co/papers/2210.02303) paper).
|
||||
solver_type (`str`, defaults to `midpoint`):
|
||||
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
|
||||
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
|
||||
rho (`float`, defaults to `7.0`):
|
||||
The parameter for calculating the Karras sigma schedule from the EDM
|
||||
[paper](https://huggingface.co/papers/2206.00364).
|
||||
solver_type (`str`, defaults to `"midpoint"`):
|
||||
Solver type for the second-order solver. Must be one of `"midpoint"` or `"heun"`. The solver type slightly
|
||||
affects the sample quality, especially for a small number of steps. It is recommended to use `"midpoint"`.
|
||||
lower_order_final (`bool`, defaults to `True`):
|
||||
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
|
||||
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
|
||||
@@ -65,8 +68,9 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
|
||||
steps, but sometimes may result in blurring.
|
||||
final_sigmas_type (`str`, defaults to `"zero"`):
|
||||
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
||||
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
||||
The final `sigma` value for the noise schedule during the sampling process. Must be one of `"zero"` or
|
||||
`"sigma_min"`. If `"sigma_min"`, the final sigma is the same as the last sigma in the training schedule. If
|
||||
`"zero"`, the final sigma is set to 0.
|
||||
"""
|
||||
|
||||
_compatibles = []
|
||||
@@ -78,16 +82,16 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigma_min: float = 0.3,
|
||||
sigma_max: float = 500,
|
||||
sigma_data: float = 1.0,
|
||||
sigma_schedule: str = "exponential",
|
||||
sigma_schedule: Literal["exponential", "karras"] = "exponential",
|
||||
num_train_timesteps: int = 1000,
|
||||
solver_order: int = 2,
|
||||
prediction_type: str = "v_prediction",
|
||||
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "v_prediction",
|
||||
rho: float = 7.0,
|
||||
solver_type: str = "midpoint",
|
||||
solver_type: Literal["midpoint", "heun"] = "midpoint",
|
||||
lower_order_final: bool = True,
|
||||
euler_at_final: bool = False,
|
||||
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
||||
):
|
||||
final_sigmas_type: Literal["zero", "sigma_min"] = "zero",
|
||||
) -> None:
|
||||
if solver_type not in ["midpoint", "heun"]:
|
||||
if solver_type in ["logrho", "bh1", "bh2"]:
|
||||
self.register_to_config(solver_type="midpoint")
|
||||
@@ -113,26 +117,40 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||||
|
||||
@property
|
||||
def init_noise_sigma(self):
|
||||
# standard deviation of the initial noise distribution
|
||||
def init_noise_sigma(self) -> float:
|
||||
"""
|
||||
The standard deviation of the initial noise distribution.
|
||||
|
||||
Returns:
|
||||
`float`:
|
||||
The initial noise sigma value computed as `sqrt(sigma_max^2 + 1)`.
|
||||
"""
|
||||
return (self.config.sigma_max**2 + 1) ** 0.5
|
||||
|
||||
@property
|
||||
def step_index(self):
|
||||
def step_index(self) -> Optional[int]:
|
||||
"""
|
||||
The index counter for current timestep. It will increase 1 after each scheduler step.
|
||||
|
||||
Returns:
|
||||
`int` or `None`:
|
||||
The current step index, or `None` if not yet initialized.
|
||||
"""
|
||||
return self._step_index
|
||||
|
||||
@property
|
||||
def begin_index(self):
|
||||
def begin_index(self) -> Optional[int]:
|
||||
"""
|
||||
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
||||
|
||||
Returns:
|
||||
`int` or `None`:
|
||||
The begin index, or `None` if not yet set.
|
||||
"""
|
||||
return self._begin_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
||||
def set_begin_index(self, begin_index: int = 0):
|
||||
def set_begin_index(self, begin_index: int = 0) -> None:
|
||||
"""
|
||||
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
||||
|
||||
@@ -161,7 +179,18 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
scaled_sample = sample * c_in
|
||||
return scaled_sample
|
||||
|
||||
def precondition_noise(self, sigma):
|
||||
def precondition_noise(self, sigma: Union[float, torch.Tensor]) -> torch.Tensor:
|
||||
"""
|
||||
Precondition the noise level by computing a normalized timestep representation.
|
||||
|
||||
Args:
|
||||
sigma (`float` or `torch.Tensor`):
|
||||
The sigma (noise level) value to precondition.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The preconditioned noise value computed as `atan(sigma) / pi * 2`.
|
||||
"""
|
||||
if not isinstance(sigma, torch.Tensor):
|
||||
sigma = torch.tensor([sigma])
|
||||
|
||||
@@ -228,12 +257,14 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.is_scale_input_called = True
|
||||
return sample
|
||||
|
||||
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
|
||||
def set_timesteps(
|
||||
self, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None
|
||||
) -> None:
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
Args:
|
||||
num_inference_steps (`int`):
|
||||
num_inference_steps (`int`, *optional*):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
@@ -334,7 +365,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
||||
def _sigma_to_t(self, sigma, log_sigmas):
|
||||
def _sigma_to_t(self, sigma: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Convert sigma values to corresponding timestep values through interpolation.
|
||||
|
||||
@@ -370,7 +401,19 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
t = t.reshape(sigma.shape)
|
||||
return t
|
||||
|
||||
def _sigma_to_alpha_sigma_t(self, sigma):
|
||||
def _sigma_to_alpha_sigma_t(self, sigma: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Convert sigma to alpha and sigma_t values for the diffusion process.
|
||||
|
||||
Args:
|
||||
sigma (`torch.Tensor`):
|
||||
The sigma (noise level) value.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, torch.Tensor]`:
|
||||
A tuple containing `alpha_t` (always 1 since inputs are pre-scaled) and `sigma_t` (same as input
|
||||
sigma).
|
||||
"""
|
||||
alpha_t = torch.tensor(1) # Inputs are pre-scaled before going into unet, so alpha_t = 1
|
||||
sigma_t = sigma
|
||||
|
||||
@@ -536,7 +579,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
return step_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
|
||||
def _init_step_index(self, timestep):
|
||||
def _init_step_index(self, timestep: Union[int, torch.Tensor]) -> None:
|
||||
"""
|
||||
Initialize the step_index counter for the scheduler.
|
||||
|
||||
@@ -557,7 +600,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
model_output: torch.Tensor,
|
||||
timestep: Union[int, torch.Tensor],
|
||||
sample: torch.Tensor,
|
||||
generator=None,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[SchedulerOutput, Tuple]:
|
||||
"""
|
||||
@@ -567,20 +610,19 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from learned diffusion model.
|
||||
timestep (`int`):
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.Tensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
generator (`torch.Generator`, *optional*):
|
||||
A random number generator.
|
||||
return_dict (`bool`):
|
||||
return_dict (`bool`, defaults to `True`):
|
||||
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
||||
|
||||
Returns:
|
||||
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
||||
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
||||
tuple is returned where the first element is the sample tensor.
|
||||
|
||||
"""
|
||||
if self.num_inference_steps is None:
|
||||
raise ValueError(
|
||||
@@ -702,5 +744,12 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
|
||||
return c_in
|
||||
|
||||
def __len__(self):
|
||||
def __len__(self) -> int:
|
||||
"""
|
||||
Returns the number of training timesteps.
|
||||
|
||||
Returns:
|
||||
`int`:
|
||||
The number of training timesteps configured for the scheduler.
|
||||
"""
|
||||
return self.config.num_train_timesteps
|
||||
|
||||
Reference in New Issue
Block a user