mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
StableDiffusionUpscalePipeline (#1396)
* StableDiffusionUpscalePipeline * fix a few things * make it better * fix image batching * run vae in fp32 * fix docstr * resize to mul of 64 * doc * remove safety_checker * add max_noise_level * fix Copied * begin tests * slow tests * default max_noise_level * remove kwargs * doc * fix * fix fast tests * fix fast tests * no sf * don't offload vae Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
This commit is contained in:
@@ -95,3 +95,10 @@ If you want to use all possible use cases in a single `DiffusionPipeline` you ca
|
||||
- __call__
|
||||
- enable_attention_slicing
|
||||
- disable_attention_slicing
|
||||
|
||||
|
||||
## StableDiffusionUpscalePipeline
|
||||
[[autodoc]] StableDiffusionUpscalePipeline
|
||||
- __call__
|
||||
- enable_attention_slicing
|
||||
- disable_attention_slicing
|
||||
|
||||
@@ -75,6 +75,7 @@ if is_torch_available() and is_transformers_available():
|
||||
StableDiffusionInpaintPipelineLegacy,
|
||||
StableDiffusionPipeline,
|
||||
StableDiffusionPipelineSafe,
|
||||
StableDiffusionUpscalePipeline,
|
||||
VersatileDiffusionDualGuidedPipeline,
|
||||
VersatileDiffusionImageVariationPipeline,
|
||||
VersatileDiffusionPipeline,
|
||||
|
||||
@@ -554,7 +554,9 @@ class DiffusionPipeline(ConfigMixin):
|
||||
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
|
||||
|
||||
if len(unused_kwargs) > 0:
|
||||
logger.warning(f"Keyword arguments {unused_kwargs} not recognized.")
|
||||
logger.warning(
|
||||
f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
|
||||
)
|
||||
|
||||
# import it here to avoid circular import
|
||||
from diffusers import pipelines
|
||||
@@ -680,8 +682,8 @@ class DiffusionPipeline(ConfigMixin):
|
||||
@staticmethod
|
||||
def _get_signature_keys(obj):
|
||||
parameters = inspect.signature(obj.__init__).parameters
|
||||
required_parameters = {k: v for k, v in parameters.items() if v.default is not True}
|
||||
optional_parameters = set({k for k, v in parameters.items() if v.default is True})
|
||||
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
|
||||
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
|
||||
expected_modules = set(required_parameters.keys()) - set(["self"])
|
||||
return expected_modules, optional_parameters
|
||||
|
||||
|
||||
@@ -24,6 +24,7 @@ if is_torch_available() and is_transformers_available():
|
||||
StableDiffusionInpaintPipeline,
|
||||
StableDiffusionInpaintPipelineLegacy,
|
||||
StableDiffusionPipeline,
|
||||
StableDiffusionUpscalePipeline,
|
||||
)
|
||||
from .stable_diffusion_safe import StableDiffusionPipelineSafe
|
||||
from .versatile_diffusion import (
|
||||
|
||||
@@ -40,6 +40,7 @@ if is_transformers_available() and is_torch_available():
|
||||
from .pipeline_stable_diffusion_img2img import StableDiffusionImg2ImgPipeline
|
||||
from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
|
||||
from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy
|
||||
from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
|
||||
from .safety_checker import StableDiffusionSafetyChecker
|
||||
|
||||
if is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0.dev0"):
|
||||
|
||||
@@ -0,0 +1,551 @@
|
||||
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
from typing import Callable, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
import PIL
|
||||
from diffusers.utils import is_accelerate_available
|
||||
from transformers import CLIPTextModel, CLIPTokenizer
|
||||
|
||||
from ...models import AutoencoderKL, UNet2DConditionModel
|
||||
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
||||
from ...schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
||||
from ...utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
def preprocess(image):
|
||||
# resize to multiple of 64
|
||||
width, height = image.size
|
||||
width = width - width % 64
|
||||
height = height - height % 64
|
||||
image = image.resize((width, height))
|
||||
|
||||
image = np.array(image.convert("RGB"))
|
||||
image = image[None].transpose(0, 3, 1, 2)
|
||||
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
||||
return image
|
||||
|
||||
|
||||
class StableDiffusionUpscalePipeline(DiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for text-guided image super-resolution using Stable Diffusion 2.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||||
text_encoder ([`CLIPTextModel`]):
|
||||
Frozen text-encoder. Stable Diffusion uses the text portion of
|
||||
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
||||
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
||||
tokenizer (`CLIPTokenizer`):
|
||||
Tokenizer of class
|
||||
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
||||
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
||||
low_res_scheduler ([`SchedulerMixin`]):
|
||||
A scheduler used to add initial noise to the low res conditioning image. It must be an instance of
|
||||
[`DDPMScheduler`].
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: CLIPTextModel,
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: UNet2DConditionModel,
|
||||
low_res_scheduler: DDPMScheduler,
|
||||
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
||||
max_noise_level: int = 350,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
unet=unet,
|
||||
low_res_scheduler=low_res_scheduler,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
self.register_to_config(max_noise_level=max_noise_level)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_attention_slicing
|
||||
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
||||
r"""
|
||||
Enable sliced attention computation.
|
||||
|
||||
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
||||
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
||||
|
||||
Args:
|
||||
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
||||
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
||||
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
||||
`attention_head_dim` must be a multiple of `slice_size`.
|
||||
"""
|
||||
if slice_size == "auto":
|
||||
if isinstance(self.unet.config.attention_head_dim, int):
|
||||
# half the attention head size is usually a good trade-off between
|
||||
# speed and memory
|
||||
slice_size = self.unet.config.attention_head_dim // 2
|
||||
else:
|
||||
# if `attention_head_dim` is a list, take the smallest head size
|
||||
slice_size = min(self.unet.config.attention_head_dim)
|
||||
|
||||
self.unet.set_attention_slice(slice_size)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_attention_slicing
|
||||
def disable_attention_slicing(self):
|
||||
r"""
|
||||
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
||||
back to computing attention in one step.
|
||||
"""
|
||||
# set slice_size = `None` to disable `attention slicing`
|
||||
self.enable_attention_slicing(None)
|
||||
|
||||
def enable_sequential_cpu_offload(self, gpu_id=0):
|
||||
r"""
|
||||
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
||||
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
||||
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
||||
"""
|
||||
if is_accelerate_available():
|
||||
from accelerate import cpu_offload
|
||||
else:
|
||||
raise ImportError("Please install accelerate via `pip install accelerate`")
|
||||
|
||||
device = torch.device(f"cuda:{gpu_id}")
|
||||
|
||||
for cpu_offloaded_model in [self.unet, self.text_encoder]:
|
||||
if cpu_offloaded_model is not None:
|
||||
cpu_offload(cpu_offloaded_model, device)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_xformers_memory_efficient_attention
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_xformers_memory_efficient_attention
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
@property
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
||||
def _execution_device(self):
|
||||
r"""
|
||||
Returns the device on which the pipeline's models will be executed. After calling
|
||||
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
||||
hooks.
|
||||
"""
|
||||
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
||||
return self.device
|
||||
for module in self.unet.modules():
|
||||
if (
|
||||
hasattr(module, "_hf_hook")
|
||||
and hasattr(module._hf_hook, "execution_device")
|
||||
and module._hf_hook.execution_device is not None
|
||||
):
|
||||
return torch.device(module._hf_hook.execution_device)
|
||||
return self.device
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
||||
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `list(int)`):
|
||||
prompt to be encoded
|
||||
device: (`torch.device`):
|
||||
torch device
|
||||
num_images_per_prompt (`int`):
|
||||
number of images that should be generated per prompt
|
||||
do_classifier_free_guidance (`bool`):
|
||||
whether to use classifier free guidance or not
|
||||
negative_prompt (`str` or `List[str]`):
|
||||
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
||||
if `guidance_scale` is less than `1`).
|
||||
"""
|
||||
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="pt").input_ids
|
||||
|
||||
if not torch.equal(text_input_ids, untruncated_ids):
|
||||
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
||||
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
||||
)
|
||||
|
||||
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
||||
attention_mask = text_inputs.attention_mask.to(device)
|
||||
else:
|
||||
attention_mask = None
|
||||
|
||||
text_embeddings = self.text_encoder(
|
||||
text_input_ids.to(device),
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
text_embeddings = text_embeddings[0]
|
||||
|
||||
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
||||
bs_embed, seq_len, _ = text_embeddings.shape
|
||||
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
||||
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if do_classifier_free_guidance:
|
||||
uncond_tokens: List[str]
|
||||
if negative_prompt is None:
|
||||
uncond_tokens = [""] * batch_size
|
||||
elif type(prompt) is not type(negative_prompt):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
elif isinstance(negative_prompt, str):
|
||||
uncond_tokens = [negative_prompt]
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
else:
|
||||
uncond_tokens = negative_prompt
|
||||
|
||||
max_length = text_input_ids.shape[-1]
|
||||
uncond_input = self.tokenizer(
|
||||
uncond_tokens,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
||||
attention_mask = uncond_input.attention_mask.to(device)
|
||||
else:
|
||||
attention_mask = None
|
||||
|
||||
uncond_embeddings = self.text_encoder(
|
||||
uncond_input.input_ids.to(device),
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
uncond_embeddings = uncond_embeddings[0]
|
||||
|
||||
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
||||
seq_len = uncond_embeddings.shape[1]
|
||||
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
||||
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
||||
|
||||
return text_embeddings
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||||
def prepare_extra_step_kwargs(self, generator, eta):
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
# check if the scheduler accepts generator
|
||||
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
if accepts_generator:
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents with 0.18215->0.08333
|
||||
def decode_latents(self, latents):
|
||||
latents = 1 / 0.08333 * latents
|
||||
image = self.vae.decode(latents).sample
|
||||
image = (image / 2 + 0.5).clamp(0, 1)
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
||||
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
return image
|
||||
|
||||
def check_inputs(self, prompt, image, noise_level, callback_steps):
|
||||
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if (
|
||||
not isinstance(image, torch.Tensor)
|
||||
and not isinstance(image, PIL.Image.Image)
|
||||
and not isinstance(image, list)
|
||||
):
|
||||
raise ValueError(
|
||||
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or `list` but is {type(image)}"
|
||||
)
|
||||
|
||||
# verify batch size of prompt and image are same if image is a list or tensor
|
||||
if isinstance(image, list) or isinstance(image, torch.Tensor):
|
||||
if isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
else:
|
||||
batch_size = len(prompt)
|
||||
if isinstance(image, list):
|
||||
image_batch_size = len(image)
|
||||
else:
|
||||
image_batch_size = image.shape[0]
|
||||
if batch_size != image_batch_size:
|
||||
raise ValueError(
|
||||
f"`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}."
|
||||
" Please make sure that passed `prompt` matches the batch size of `image`."
|
||||
)
|
||||
|
||||
# check noise level
|
||||
if noise_level > self.config.max_noise_level:
|
||||
raise ValueError(f"`noise_level` has to be <= {self.config.max_noise_level} but is {noise_level}")
|
||||
|
||||
if (callback_steps is None) or (
|
||||
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||||
f" {type(callback_steps)}."
|
||||
)
|
||||
|
||||
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
||||
shape = (batch_size, num_channels_latents, height, width)
|
||||
if latents is None:
|
||||
if device.type == "mps":
|
||||
# randn does not work reproducibly on mps
|
||||
latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
|
||||
else:
|
||||
latents = torch.randn(shape, generator=generator, device=device, dtype=dtype)
|
||||
else:
|
||||
if latents.shape != shape:
|
||||
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
||||
latents = latents.to(device)
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
return latents
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
image: Union[torch.FloatTensor, PIL.Image.Image, List[PIL.Image.Image]],
|
||||
num_inference_steps: int = 75,
|
||||
guidance_scale: float = 9.0,
|
||||
noise_level: int = 20,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
callback_steps: Optional[int] = 1,
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`):
|
||||
The prompt or prompts to guide the image generation.
|
||||
image (`PIL.Image.Image` or List[`PIL.Image.Image`] or `torch.FloatTensor`):
|
||||
`Image`, or tensor representing an image batch which will be upscaled. *
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
guidance_scale (`float`, *optional*, defaults to 7.5):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
||||
if `guidance_scale` is less than `1`).
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||||
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||||
generator (`torch.Generator`, *optional*):
|
||||
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
||||
deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
||||
plain tuple.
|
||||
callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. The function will be
|
||||
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
||||
callback_steps (`int`, *optional*, defaults to 1):
|
||||
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
||||
called at every step.
|
||||
|
||||
Returns:
|
||||
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
||||
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
||||
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
||||
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
||||
(nsfw) content, according to the `safety_checker`.
|
||||
"""
|
||||
|
||||
# 1. Check inputs
|
||||
self.check_inputs(prompt, image, noise_level, callback_steps)
|
||||
|
||||
# 2. Define call parameters
|
||||
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
||||
device = self._execution_device
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
# 3. Encode input prompt
|
||||
text_embeddings = self._encode_prompt(
|
||||
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
||||
)
|
||||
|
||||
# 4. Preprocess image
|
||||
image = [image] if isinstance(image, PIL.Image.Image) else image
|
||||
if isinstance(image, list):
|
||||
image = [preprocess(img) for img in image]
|
||||
image = torch.cat(image, dim=0)
|
||||
image = image.to(dtype=text_embeddings.dtype, device=device)
|
||||
|
||||
# 5. set timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
timesteps_tensor = self.scheduler.timesteps
|
||||
|
||||
# 5. Add noise to image
|
||||
noise_level = torch.tensor([noise_level], dtype=torch.long, device=device)
|
||||
if device.type == "mps":
|
||||
# randn does not work reproducibly on mps
|
||||
noise = torch.randn(image.shape, generator=generator, device="cpu", dtype=text_embeddings.dtype).to(device)
|
||||
else:
|
||||
noise = torch.randn(image.shape, generator=generator, device=device, dtype=text_embeddings.dtype)
|
||||
image = self.low_res_scheduler.add_noise(image, noise, noise_level)
|
||||
image = torch.cat([image] * 2) if do_classifier_free_guidance else image
|
||||
noise_level = torch.cat([noise_level] * 2) if do_classifier_free_guidance else noise_level
|
||||
|
||||
# 6. Prepare latent variables
|
||||
height, width = image.shape[2:]
|
||||
num_channels_latents = self.vae.config.latent_channels
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
text_embeddings.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# 7. Check that sizes of image and latents match
|
||||
num_channels_image = image.shape[1]
|
||||
if num_channels_latents + num_channels_image != self.unet.config.in_channels:
|
||||
raise ValueError(
|
||||
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
||||
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
||||
f" `num_channels_image`: {num_channels_image} "
|
||||
f" = {num_channels_latents+num_channels_image}. Please verify the config of"
|
||||
" `pipeline.unet` or your `image` input."
|
||||
)
|
||||
|
||||
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
# 9. Denoising loop
|
||||
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
|
||||
# concat latents, mask, masked_image_latents in the channel dimension
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
latent_model_input = torch.cat([latent_model_input, image], dim=1)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
latent_model_input, t, encoder_hidden_states=text_embeddings, class_labels=noise_level
|
||||
).sample
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
||||
|
||||
# call the callback, if provided
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
callback(i, t, latents)
|
||||
|
||||
# 10. Post-processing
|
||||
# make sure the VAE is in float32 mode, as it overflows in float16
|
||||
self.vae.to(dtype=torch.float32)
|
||||
image = self.decode_latents(latents.float())
|
||||
|
||||
# 11. Convert to PIL
|
||||
if output_type == "pil":
|
||||
image = self.numpy_to_pil(image)
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return ImagePipelineOutput(images=image)
|
||||
@@ -154,6 +154,21 @@ class StableDiffusionPipelineSafe(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class StableDiffusionUpscalePipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class VersatileDiffusionDualGuidedPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
@@ -0,0 +1,315 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import gc
|
||||
import random
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNet2DConditionModel
|
||||
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
|
||||
from diffusers.utils.testing_utils import require_torch_gpu
|
||||
from PIL import Image
|
||||
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
||||
|
||||
from ...test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
torch.backends.cuda.matmul.allow_tf32 = False
|
||||
|
||||
|
||||
class StableDiffusionUpscalePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
def tearDown(self):
|
||||
# clean up the VRAM after each test
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
@property
|
||||
def dummy_image(self):
|
||||
batch_size = 1
|
||||
num_channels = 3
|
||||
sizes = (32, 32)
|
||||
|
||||
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
|
||||
return image
|
||||
|
||||
@property
|
||||
def dummy_cond_unet_upscale(self):
|
||||
torch.manual_seed(0)
|
||||
model = UNet2DConditionModel(
|
||||
block_out_channels=(32, 32, 64),
|
||||
layers_per_block=2,
|
||||
sample_size=32,
|
||||
in_channels=7,
|
||||
out_channels=4,
|
||||
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"),
|
||||
up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"),
|
||||
cross_attention_dim=32,
|
||||
# SD2-specific config below
|
||||
attention_head_dim=8,
|
||||
use_linear_projection=True,
|
||||
only_cross_attention=(True, True, False),
|
||||
num_class_embeds=100,
|
||||
)
|
||||
return model
|
||||
|
||||
@property
|
||||
def dummy_vae(self):
|
||||
torch.manual_seed(0)
|
||||
model = AutoencoderKL(
|
||||
block_out_channels=[32, 32, 64],
|
||||
in_channels=3,
|
||||
out_channels=3,
|
||||
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"],
|
||||
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
|
||||
latent_channels=4,
|
||||
)
|
||||
return model
|
||||
|
||||
@property
|
||||
def dummy_text_encoder(self):
|
||||
torch.manual_seed(0)
|
||||
config = CLIPTextConfig(
|
||||
bos_token_id=0,
|
||||
eos_token_id=2,
|
||||
hidden_size=32,
|
||||
intermediate_size=37,
|
||||
layer_norm_eps=1e-05,
|
||||
num_attention_heads=4,
|
||||
num_hidden_layers=5,
|
||||
pad_token_id=1,
|
||||
vocab_size=1000,
|
||||
# SD2-specific config below
|
||||
hidden_act="gelu",
|
||||
projection_dim=512,
|
||||
)
|
||||
return CLIPTextModel(config)
|
||||
|
||||
def test_stable_diffusion_upscale(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
unet = self.dummy_cond_unet_upscale
|
||||
low_res_scheduler = DDPMScheduler()
|
||||
scheduler = DDIMScheduler(prediction_type="v_prediction")
|
||||
vae = self.dummy_vae
|
||||
text_encoder = self.dummy_text_encoder
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
|
||||
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
|
||||
|
||||
# make sure here that pndm scheduler skips prk
|
||||
sd_pipe = StableDiffusionUpscalePipeline(
|
||||
unet=unet,
|
||||
low_res_scheduler=low_res_scheduler,
|
||||
scheduler=scheduler,
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
max_noise_level=350,
|
||||
)
|
||||
sd_pipe = sd_pipe.to(device)
|
||||
sd_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
prompt = "A painting of a squirrel eating a burger"
|
||||
generator = torch.Generator(device=device).manual_seed(0)
|
||||
output = sd_pipe(
|
||||
[prompt],
|
||||
image=low_res_image,
|
||||
generator=generator,
|
||||
guidance_scale=6.0,
|
||||
noise_level=20,
|
||||
num_inference_steps=2,
|
||||
output_type="np",
|
||||
)
|
||||
|
||||
image = output.images
|
||||
|
||||
generator = torch.Generator(device=device).manual_seed(0)
|
||||
image_from_tuple = sd_pipe(
|
||||
[prompt],
|
||||
image=low_res_image,
|
||||
generator=generator,
|
||||
guidance_scale=6.0,
|
||||
noise_level=20,
|
||||
num_inference_steps=2,
|
||||
output_type="np",
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
||||
|
||||
expected_height_width = low_res_image.size[0] * 4
|
||||
assert image.shape == (1, expected_height_width, expected_height_width, 3)
|
||||
expected_slice = np.array([0.2562, 0.3606, 0.4204, 0.4469, 0.4822, 0.4647, 0.5315, 0.5748, 0.5606])
|
||||
|
||||
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||||
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
||||
|
||||
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
|
||||
def test_stable_diffusion_upscale_fp16(self):
|
||||
"""Test that stable diffusion upscale works with fp16"""
|
||||
unet = self.dummy_cond_unet_upscale
|
||||
low_res_scheduler = DDPMScheduler()
|
||||
scheduler = DDIMScheduler(prediction_type="v_prediction")
|
||||
vae = self.dummy_vae
|
||||
text_encoder = self.dummy_text_encoder
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
|
||||
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
|
||||
|
||||
# put models in fp16, except vae as it overflows in fp16
|
||||
unet = unet.half()
|
||||
text_encoder = text_encoder.half()
|
||||
|
||||
# make sure here that pndm scheduler skips prk
|
||||
sd_pipe = StableDiffusionUpscalePipeline(
|
||||
unet=unet,
|
||||
low_res_scheduler=low_res_scheduler,
|
||||
scheduler=scheduler,
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
max_noise_level=350,
|
||||
)
|
||||
sd_pipe = sd_pipe.to(torch_device)
|
||||
sd_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
prompt = "A painting of a squirrel eating a burger"
|
||||
generator = torch.Generator(device=torch_device).manual_seed(0)
|
||||
image = sd_pipe(
|
||||
[prompt],
|
||||
image=low_res_image,
|
||||
generator=generator,
|
||||
num_inference_steps=2,
|
||||
output_type="np",
|
||||
).images
|
||||
|
||||
expected_height_width = low_res_image.size[0] * 4
|
||||
assert image.shape == (1, expected_height_width, expected_height_width, 3)
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
class StableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase):
|
||||
def tearDown(self):
|
||||
# clean up the VRAM after each test
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def test_stable_diffusion_upscale_pipeline(self):
|
||||
image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
||||
"/sd2-upscale/low_res_cat.png"
|
||||
)
|
||||
expected_image = load_numpy(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
|
||||
"/upsampled_cat.npy"
|
||||
)
|
||||
|
||||
model_id = "stabilityai/stable-diffusion-x4-upscaler"
|
||||
pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id)
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
pipe.enable_attention_slicing()
|
||||
|
||||
prompt = "a cat sitting on a park bench"
|
||||
|
||||
generator = torch.Generator(device=torch_device).manual_seed(0)
|
||||
output = pipe(
|
||||
prompt=prompt,
|
||||
image=image,
|
||||
generator=generator,
|
||||
output_type="np",
|
||||
)
|
||||
image = output.images[0]
|
||||
|
||||
assert image.shape == (512, 512, 3)
|
||||
assert np.abs(expected_image - image).max() < 1e-3
|
||||
|
||||
def test_stable_diffusion_upscale_pipeline_fp16(self):
|
||||
image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
||||
"/sd2-upscale/low_res_cat.png"
|
||||
)
|
||||
expected_image = load_numpy(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
|
||||
"/upsampled_cat_fp16.npy"
|
||||
)
|
||||
|
||||
model_id = "stabilityai/stable-diffusion-x4-upscaler"
|
||||
pipe = StableDiffusionUpscalePipeline.from_pretrained(
|
||||
model_id,
|
||||
revision="fp16",
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
pipe.enable_attention_slicing()
|
||||
|
||||
prompt = "a cat sitting on a park bench"
|
||||
|
||||
generator = torch.Generator(device=torch_device).manual_seed(0)
|
||||
output = pipe(
|
||||
prompt=prompt,
|
||||
image=image,
|
||||
generator=generator,
|
||||
output_type="np",
|
||||
)
|
||||
image = output.images[0]
|
||||
|
||||
assert image.shape == (512, 512, 3)
|
||||
assert np.abs(expected_image - image).max() < 5e-1
|
||||
|
||||
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.reset_max_memory_allocated()
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
|
||||
image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
||||
"/sd2-upscale/low_res_cat.png"
|
||||
)
|
||||
|
||||
model_id = "stabilityai/stable-diffusion-x4-upscaler"
|
||||
pipe = StableDiffusionUpscalePipeline.from_pretrained(
|
||||
model_id,
|
||||
revision="fp16",
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
pipe.enable_attention_slicing(1)
|
||||
pipe.enable_sequential_cpu_offload()
|
||||
|
||||
prompt = "a cat sitting on a park bench"
|
||||
|
||||
generator = torch.Generator(device=torch_device).manual_seed(0)
|
||||
_ = pipe(
|
||||
prompt=prompt,
|
||||
image=image,
|
||||
generator=generator,
|
||||
num_inference_steps=5,
|
||||
output_type="np",
|
||||
)
|
||||
|
||||
mem_bytes = torch.cuda.max_memory_allocated()
|
||||
# make sure that less than 2.65 GB is allocated
|
||||
assert mem_bytes < 2.65 * 10**9
|
||||
Reference in New Issue
Block a user