1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

cleanup vae file

This commit is contained in:
patil-suraj
2022-06-29 11:53:58 +02:00
parent 2ac9b02609
commit 99568c5a39

View File

@@ -82,44 +82,6 @@ class ResnetBlock(nn.Module):
return x + h
# class AttnBlock(nn.Module):
# def __init__(self, in_channels):
# super().__init__()
# self.in_channels = in_channels
# self.norm = Normalize(in_channels)
# self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
# self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
# self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
# self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
# def forward(self, x):
# h_ = x
# h_ = self.norm(h_)
# q = self.q(h_)
# k = self.k(h_)
# v = self.v(h_)
# # compute attention
# b, c, h, w = q.shape
# q = q.reshape(b, c, h * w)
# q = q.permute(0, 2, 1) # b,hw,c
# k = k.reshape(b, c, h * w) # b,c,hw
# w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
# w_ = w_ * (int(c) ** (-0.5))
# w_ = torch.nn.functional.softmax(w_, dim=2)
# # attend to values
# v = v.reshape(b, c, h * w)
# w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
# h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
# h_ = h_.reshape(b, c, h, w)
# h_ = self.proj_out(h_)
# return x + h_
class Encoder(nn.Module):
def __init__(
self,