mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Add InstantID Pipeline (#6673)
* add instantid pipeline * format * Update README.md * Update README.md * format --------- Co-authored-by: ResearcherXman <xhs.research@gmail.com> Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
This commit is contained in:
@@ -60,8 +60,8 @@ prompt-to-prompt | change parts of a prompt and retain image structure (see [pap
|
||||
| Rerender A Video Pipeline | Implementation of [[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation](https://arxiv.org/abs/2306.07954) | [Rerender A Video Pipeline](#Rerender_A_Video) | - | [Yifan Zhou](https://github.com/SingleZombie) |
|
||||
| StyleAligned Pipeline | Implementation of [Style Aligned Image Generation via Shared Attention](https://arxiv.org/abs/2312.02133) | [StyleAligned Pipeline](#stylealigned-pipeline) | [](https://drive.google.com/file/d/15X2E0jFPTajUIjS0FzX50OaHsCbP2lQ0/view?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
|
||||
| AnimateDiff Image-To-Video Pipeline | Experimental Image-To-Video support for AnimateDiff (open to improvements) | [AnimateDiff Image To Video Pipeline](#animatediff-image-to-video-pipeline) | [](https://drive.google.com/file/d/1TvzCDPHhfFtdcJZe4RLloAwyoLKuttWK/view?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
|
||||
|
||||
| IP Adapter FaceID Stable Diffusion | Stable Diffusion Pipeline that supports IP Adapter Face ID | [IP Adapter Face ID](#ip-adapter-face-id) | - | [Fabio Rigano](https://github.com/fabiorigano) |
|
||||
IP Adapter FaceID Stable Diffusion | Stable Diffusion Pipeline that supports IP Adapter Face ID | [IP Adapter Face ID](#ip-adapter-face-id) | - | [Fabio Rigano](https://github.com/fabiorigano) |
|
||||
InstantID Pipeline | Stable Diffusion XL Pipeline that supports InstantID | [InstantID Pipeline](#instantid-pipeline) | [](https://huggingface.co/spaces/InstantX/InstantID) | [Haofan Wang](https://github.com/haofanwang) |
|
||||
|
||||
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
|
||||
```py
|
||||
@@ -3533,3 +3533,73 @@ images = pipeline(
|
||||
for i in range(num_images):
|
||||
images[i].save(f"c{i}.png")
|
||||
```
|
||||
|
||||
### InstantID Pipeline
|
||||
|
||||
InstantID is a new state-of-the-art tuning-free method to achieve ID-Preserving generation with only single image, supporting various downstream tasks. For any usgae question, please refer to the [official implementation](https://github.com/InstantID/InstantID).
|
||||
|
||||
```py
|
||||
# !pip install opencv-python transformers accelerate insightface
|
||||
import diffusers
|
||||
from diffusers.utils import load_image
|
||||
from diffusers.models import ControlNetModel
|
||||
|
||||
import cv2
|
||||
import torch
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from insightface.app import FaceAnalysis
|
||||
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
|
||||
|
||||
# prepare 'antelopev2' under ./models
|
||||
# https://github.com/deepinsight/insightface/issues/1896#issuecomment-1023867304
|
||||
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
||||
app.prepare(ctx_id=0, det_size=(640, 640))
|
||||
|
||||
# prepare models under ./checkpoints
|
||||
# https://huggingface.co/InstantX/InstantID
|
||||
from huggingface_hub import hf_hub_download
|
||||
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
|
||||
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
|
||||
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
|
||||
|
||||
face_adapter = f'./checkpoints/ip-adapter.bin'
|
||||
controlnet_path = f'./checkpoints/ControlNetModel'
|
||||
|
||||
# load IdentityNet
|
||||
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
||||
|
||||
base_model = 'wangqixun/YamerMIX_v8'
|
||||
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
||||
base_model,
|
||||
controlnet=controlnet,
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
pipe.cuda()
|
||||
|
||||
# load adapter
|
||||
pipe.load_ip_adapter_instantid(face_adapter)
|
||||
|
||||
# load an image
|
||||
face_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ai_face2.png")
|
||||
|
||||
# prepare face emb
|
||||
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
||||
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
|
||||
face_emb = face_info['embedding']
|
||||
face_kps = draw_kps(face_image, face_info['kps'])
|
||||
|
||||
# prompt
|
||||
prompt = "film noir style, ink sketch|vector, male man, highly detailed, sharp focus, ultra sharpness, monochrome, high contrast, dramatic shadows, 1940s style, mysterious, cinematic"
|
||||
negative_prompt = "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, vibrant, colorful"
|
||||
|
||||
# generate image
|
||||
pipe.set_ip_adapter_scale(0.8)
|
||||
image = pipe(
|
||||
prompt,
|
||||
image_embeds=face_emb,
|
||||
image=face_kps,
|
||||
controlnet_conditioning_scale=0.8,
|
||||
).images[0]
|
||||
```
|
||||
|
||||
1058
examples/community/pipeline_stable_diffusion_xl_instantid.py
Normal file
1058
examples/community/pipeline_stable_diffusion_xl_instantid.py
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user