1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Add Example of IPAdapterScaleCutoffCallback to Docs (#10934)

* Add example of Ip-Adapter-Callback.

* Add image links from HF Hub.
This commit is contained in:
Parag Ekbote
2025-03-03 08:32:45 -08:00
committed by GitHub
parent c9a219b323
commit 982f9b38d6

View File

@@ -157,6 +157,84 @@ pipeline(
)
```
## IP Adapter Cutoff
IP Adapter is an image prompt adapter that can be used for diffusion models without any changes to the underlying model. We can use the IP Adapter Cutoff Callback to disable the IP Adapter after a certain number of steps. To set up the callback, you need to specify the number of denoising steps after which the callback comes into effect. You can do so by using either one of these two arguments:
- `cutoff_step_ratio`: Float number with the ratio of the steps.
- `cutoff_step_index`: Integer number with the exact number of the step.
We need to download the diffusion model and load the ip_adapter for it as follows:
```py
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
pipeline.set_ip_adapter_scale(0.6)
```
The setup for the callback should look something like this:
```py
from diffusers import AutoPipelineForText2Image
from diffusers.callbacks import IPAdapterScaleCutoffCallback
from diffusers.utils import load_image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name="ip-adapter_sdxl.bin"
)
pipeline.set_ip_adapter_scale(0.6)
callback = IPAdapterScaleCutoffCallback(
cutoff_step_ratio=None,
cutoff_step_index=5
)
image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner.png"
)
generator = torch.Generator(device="cuda").manual_seed(2628670641)
images = pipeline(
prompt="a tiger sitting in a chair drinking orange juice",
ip_adapter_image=image,
negative_prompt="deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
generator=generator,
num_inference_steps=50,
callback_on_step_end=callback,
).images
images[0].save("custom_callback_img.png")
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/without_callback.png" alt="generated image of a tiger sitting in a chair drinking orange juice" />
<figcaption class="mt-2 text-center text-sm text-gray-500">without IPAdapterScaleCutoffCallback</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/with_callback2.png" alt="generated image of a tiger sitting in a chair drinking orange juice with ip adapter callback" />
<figcaption class="mt-2 text-center text-sm text-gray-500">with IPAdapterScaleCutoffCallback</figcaption>
</div>
</div>
## Display image after each generation step
> [!TIP]