mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
add lora stuff to img2vid pipeline to fix tests
This commit is contained in:
@@ -15,7 +15,7 @@
|
||||
|
||||
import inspect
|
||||
import math
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import PIL
|
||||
import torch
|
||||
@@ -23,13 +23,17 @@ from transformers import T5EncoderModel, T5Tokenizer
|
||||
|
||||
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
from ...image_processor import PipelineImageInput
|
||||
from ...loaders import CogVideoXLoraLoaderMixin
|
||||
from ...models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
|
||||
from ...models.embeddings import get_3d_rotary_pos_embed
|
||||
from ...pipelines.pipeline_utils import DiffusionPipeline
|
||||
from ...schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
||||
from ...utils import (
|
||||
USE_PEFT_BACKEND,
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
scale_lora_layers,
|
||||
unscale_lora_layers,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ...video_processor import VideoProcessor
|
||||
@@ -265,6 +269,7 @@ class CogVideoXImageToVideoPipeline(DiffusionPipeline):
|
||||
max_sequence_length: int = 226,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
lora_scale: Optional[float] = None,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
@@ -291,9 +296,20 @@ class CogVideoXImageToVideoPipeline(DiffusionPipeline):
|
||||
torch device
|
||||
dtype: (`torch.dtype`, *optional*):
|
||||
torch dtype
|
||||
lora_scale (`float`, *optional*):
|
||||
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
||||
"""
|
||||
device = device or self._execution_device
|
||||
|
||||
# set lora scale so that monkey patched LoRA
|
||||
# function of text encoder can correctly access it
|
||||
if lora_scale is not None and isinstance(self, CogVideoXLoraLoaderMixin):
|
||||
self._lora_scale = lora_scale
|
||||
|
||||
# dynamically adjust the LoRA scale
|
||||
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
||||
scale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
if prompt is not None:
|
||||
batch_size = len(prompt)
|
||||
@@ -333,6 +349,11 @@ class CogVideoXImageToVideoPipeline(DiffusionPipeline):
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
if self.text_encoder is not None:
|
||||
if isinstance(self, CogVideoXLoraLoaderMixin) and USE_PEFT_BACKEND:
|
||||
# Retrieve the original scale by scaling back the LoRA layers
|
||||
unscale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
return prompt_embeds, negative_prompt_embeds
|
||||
|
||||
def prepare_latents(
|
||||
@@ -547,6 +568,10 @@ class CogVideoXImageToVideoPipeline(DiffusionPipeline):
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def attention_kwargs(self):
|
||||
return self._attention_kwargs
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
@@ -573,6 +598,7 @@ class CogVideoXImageToVideoPipeline(DiffusionPipeline):
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: str = "pil",
|
||||
return_dict: bool = True,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[
|
||||
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
||||
] = None,
|
||||
@@ -636,6 +662,10 @@ class CogVideoXImageToVideoPipeline(DiffusionPipeline):
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
||||
of a plain tuple.
|
||||
attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
@@ -681,6 +711,7 @@ class CogVideoXImageToVideoPipeline(DiffusionPipeline):
|
||||
negative_prompt_embeds,
|
||||
)
|
||||
self._guidance_scale = guidance_scale
|
||||
self._attention_kwargs = attention_kwargs
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Default call parameters
|
||||
@@ -699,6 +730,7 @@ class CogVideoXImageToVideoPipeline(DiffusionPipeline):
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
# 3. Encode input prompt
|
||||
lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None
|
||||
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
@@ -708,6 +740,7 @@ class CogVideoXImageToVideoPipeline(DiffusionPipeline):
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
lora_scale=lora_scale,
|
||||
)
|
||||
if do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
|
||||
Reference in New Issue
Block a user