mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
update
This commit is contained in:
@@ -39,9 +39,9 @@ logger = logging.get_logger(__name__)
|
||||
class SanaAttention(nn.Module, AttentionModuleMixin):
|
||||
"""
|
||||
Attention implementation specialized for Sana models.
|
||||
|
||||
|
||||
This module implements lightweight multi-scale linear attention as used in Sana.
|
||||
|
||||
|
||||
Args:
|
||||
in_channels (`int`): Number of input channels.
|
||||
out_channels (`int`): Number of output channels.
|
||||
@@ -51,10 +51,11 @@ class SanaAttention(nn.Module, AttentionModuleMixin):
|
||||
norm_type (`str`, defaults to "batch_norm"): Type of normalization.
|
||||
kernel_sizes (`Tuple[int, ...]`, defaults to (5,)): Kernel sizes for multi-scale attention.
|
||||
"""
|
||||
|
||||
# Set Sana-specific processor classes
|
||||
default_processor_class = SanaLinearAttnProcessorSDPA
|
||||
fused_processor_class = None # Sana doesn't have a fused processor yet
|
||||
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
@@ -68,13 +69,13 @@ class SanaAttention(nn.Module, AttentionModuleMixin):
|
||||
residual_connection: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
||||
# Core parameters
|
||||
self.eps = eps
|
||||
self.attention_head_dim = attention_head_dim
|
||||
self.norm_type = norm_type
|
||||
self.residual_connection = residual_connection
|
||||
|
||||
|
||||
# Calculate dimensions
|
||||
num_attention_heads = (
|
||||
int(in_channels // attention_head_dim * mult) if num_attention_heads is None else num_attention_heads
|
||||
@@ -82,28 +83,28 @@ class SanaAttention(nn.Module, AttentionModuleMixin):
|
||||
inner_dim = num_attention_heads * attention_head_dim
|
||||
self.inner_dim = inner_dim
|
||||
self.heads = num_attention_heads
|
||||
|
||||
|
||||
# Query, key, value projections
|
||||
self.to_q = nn.Linear(in_channels, inner_dim, bias=False)
|
||||
self.to_k = nn.Linear(in_channels, inner_dim, bias=False)
|
||||
self.to_v = nn.Linear(in_channels, inner_dim, bias=False)
|
||||
|
||||
|
||||
# Multi-scale attention
|
||||
self.to_qkv_multiscale = nn.ModuleList()
|
||||
for kernel_size in kernel_sizes:
|
||||
self.to_qkv_multiscale.append(
|
||||
SanaMultiscaleAttentionProjection(inner_dim, num_attention_heads, kernel_size)
|
||||
)
|
||||
|
||||
|
||||
# Output layers
|
||||
self.nonlinearity = nn.ReLU()
|
||||
self.to_out = nn.Linear(inner_dim * (1 + len(kernel_sizes)), out_channels, bias=False)
|
||||
self.norm_out = get_normalization(norm_type, num_features=out_channels)
|
||||
|
||||
|
||||
# Set default processor
|
||||
self.fused_projections = False
|
||||
self.set_processor(self.default_processor_class())
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
@@ -117,7 +118,7 @@ class SanaAttention(nn.Module, AttentionModuleMixin):
|
||||
|
||||
class SanaMultiscaleAttentionProjection(nn.Module):
|
||||
"""Projection layer for Sana multi-scale attention."""
|
||||
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
@@ -125,7 +126,7 @@ class SanaMultiscaleAttentionProjection(nn.Module):
|
||||
kernel_size: int,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
|
||||
channels = 3 * in_channels
|
||||
self.proj_in = nn.Conv2d(
|
||||
channels,
|
||||
@@ -136,138 +137,21 @@ class SanaMultiscaleAttentionProjection(nn.Module):
|
||||
bias=False,
|
||||
)
|
||||
self.proj_out = nn.Conv2d(channels, channels, 1, 1, 0, groups=3 * num_attention_heads, bias=False)
|
||||
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
hidden_states = self.proj_in(hidden_states)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class FluxAttention(nn.Module, AttentionModuleMixin):
|
||||
"""
|
||||
Attention implementation specialized for Flux models.
|
||||
|
||||
This module uses RMSNorm for query and key normalization and supports
|
||||
rotary embeddings through its processor.
|
||||
|
||||
Args:
|
||||
query_dim (`int`): Number of channels in query.
|
||||
cross_attention_dim (`int`, *optional*): Number of channels in encoder states.
|
||||
heads (`int`, defaults to 8): Number of attention heads.
|
||||
dim_head (`int`, defaults to 64): Dimension of each attention head.
|
||||
dropout (`float`, defaults to 0.0): Dropout probability.
|
||||
bias (`bool`, defaults to False): Whether to use bias in linear projections.
|
||||
added_kv_proj_dim (`int`, *optional*): Dimension for added key/value projections.
|
||||
"""
|
||||
# Set Flux-specific processor classes
|
||||
default_processor_class = FluxAttnProcessorSDPA
|
||||
fused_processor_class = FusedFluxAttnProcessorSDPA
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
query_dim: int,
|
||||
cross_attention_dim: Optional[int] = None,
|
||||
heads: int = 8,
|
||||
dim_head: int = 64,
|
||||
dropout: float = 0.0,
|
||||
bias: bool = False,
|
||||
added_kv_proj_dim: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Core parameters
|
||||
self.inner_dim = dim_head * heads
|
||||
self.query_dim = query_dim
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
self.use_bias = bias
|
||||
self.scale_qk = True # Flux always uses scale_qk
|
||||
|
||||
# Cross-attention setup
|
||||
self.is_cross_attention = cross_attention_dim is not None
|
||||
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
||||
|
||||
# Projections
|
||||
self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias)
|
||||
self.to_k = nn.Linear(self.cross_attention_dim, self.inner_dim, bias=bias)
|
||||
self.to_v = nn.Linear(self.cross_attention_dim, self.inner_dim, bias=bias)
|
||||
|
||||
# Flux-specific normalization
|
||||
self.norm_q = RMSNorm(dim_head, eps=1e-6)
|
||||
self.norm_k = RMSNorm(dim_head, eps=1e-6)
|
||||
|
||||
# Added projections for cross-attention
|
||||
self.added_kv_proj_dim = added_kv_proj_dim
|
||||
if added_kv_proj_dim is not None:
|
||||
self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=bias)
|
||||
self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=bias)
|
||||
self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=bias)
|
||||
|
||||
# Normalization for added projections
|
||||
self.norm_added_q = RMSNorm(dim_head, eps=1e-6)
|
||||
self.norm_added_k = RMSNorm(dim_head, eps=1e-6)
|
||||
self.added_proj_bias = bias
|
||||
|
||||
# Output projection
|
||||
self.to_out = nn.ModuleList([
|
||||
nn.Linear(self.inner_dim, query_dim, bias=bias),
|
||||
nn.Dropout(dropout)
|
||||
])
|
||||
|
||||
# For cross-attention with added projections
|
||||
if added_kv_proj_dim is not None:
|
||||
self.to_add_out = nn.Linear(self.inner_dim, query_dim, bias=bias)
|
||||
else:
|
||||
self.to_add_out = None
|
||||
|
||||
# Set default processor and fusion state
|
||||
self.fused_projections = False
|
||||
self.set_processor(self.default_processor_class())
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
||||
"""Process attention for Flux model inputs."""
|
||||
# Filter parameters to only those expected by the processor
|
||||
processor_params = inspect.signature(self.processor.__call__).parameters.keys()
|
||||
quiet_params = {"ip_adapter_masks", "ip_hidden_states"}
|
||||
|
||||
# Check for unexpected parameters
|
||||
unexpected_params = [
|
||||
k for k, _ in kwargs.items()
|
||||
if k not in processor_params and k not in quiet_params
|
||||
]
|
||||
if unexpected_params:
|
||||
logger.warning(
|
||||
f"Parameters {unexpected_params} are not expected by {self.processor.__class__.__name__} and will be ignored."
|
||||
)
|
||||
|
||||
# Filter to only expected parameters
|
||||
filtered_kwargs = {k: v for k, v in kwargs.items() if k in processor_params}
|
||||
|
||||
# Process with appropriate processor
|
||||
return self.processor(
|
||||
self,
|
||||
hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
**filtered_kwargs,
|
||||
)
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class SD3Attention(nn.Module, AttentionModuleMixin):
|
||||
"""
|
||||
Attention implementation specialized for SD3 models.
|
||||
|
||||
|
||||
This module implements the joint attention mechanism used in SD3,
|
||||
with native support for context pre-processing.
|
||||
|
||||
|
||||
Args:
|
||||
query_dim (`int`): Number of channels in query.
|
||||
cross_attention_dim (`int`, *optional*): Number of channels in encoder states.
|
||||
@@ -277,10 +161,11 @@ class SD3Attention(nn.Module, AttentionModuleMixin):
|
||||
bias (`bool`, defaults to False): Whether to use bias in linear projections.
|
||||
added_kv_proj_dim (`int`, *optional*): Dimension for added key/value projections.
|
||||
"""
|
||||
|
||||
# Set SD3-specific processor classes
|
||||
default_processor_class = JointAttnProcessorSDPA
|
||||
fused_processor_class = FusedJointAttnProcessorSDPA
|
||||
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
query_dim: int,
|
||||
@@ -293,25 +178,25 @@ class SD3Attention(nn.Module, AttentionModuleMixin):
|
||||
context_pre_only: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
||||
# Core parameters
|
||||
self.inner_dim = dim_head * heads
|
||||
self.query_dim = query_dim
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
self.scale = dim_head**-0.5
|
||||
self.use_bias = bias
|
||||
self.scale_qk = True
|
||||
self.context_pre_only = context_pre_only
|
||||
|
||||
|
||||
# Cross-attention setup
|
||||
self.is_cross_attention = cross_attention_dim is not None
|
||||
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
||||
|
||||
|
||||
# Projections for self-attention
|
||||
self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias)
|
||||
self.to_k = nn.Linear(query_dim, self.inner_dim, bias=bias)
|
||||
self.to_v = nn.Linear(query_dim, self.inner_dim, bias=bias)
|
||||
|
||||
|
||||
# Added projections for context processing
|
||||
self.added_kv_proj_dim = added_kv_proj_dim
|
||||
if added_kv_proj_dim is not None:
|
||||
@@ -319,23 +204,20 @@ class SD3Attention(nn.Module, AttentionModuleMixin):
|
||||
self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=bias)
|
||||
self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=bias)
|
||||
self.added_proj_bias = bias
|
||||
|
||||
|
||||
# Output projection
|
||||
self.to_out = nn.ModuleList([
|
||||
nn.Linear(self.inner_dim, query_dim, bias=bias),
|
||||
nn.Dropout(dropout)
|
||||
])
|
||||
|
||||
self.to_out = nn.ModuleList([nn.Linear(self.inner_dim, query_dim, bias=bias), nn.Dropout(dropout)])
|
||||
|
||||
# Context output projection
|
||||
if added_kv_proj_dim is not None and not context_pre_only:
|
||||
self.to_add_out = nn.Linear(self.inner_dim, query_dim, bias=bias)
|
||||
else:
|
||||
self.to_add_out = None
|
||||
|
||||
|
||||
# Set default processor and fusion state
|
||||
self.fused_projections = False
|
||||
self.set_processor(self.default_processor_class())
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
@@ -347,20 +229,17 @@ class SD3Attention(nn.Module, AttentionModuleMixin):
|
||||
# Filter parameters to only those expected by the processor
|
||||
processor_params = inspect.signature(self.processor.__call__).parameters.keys()
|
||||
quiet_params = {"ip_adapter_masks", "ip_hidden_states"}
|
||||
|
||||
|
||||
# Check for unexpected parameters
|
||||
unexpected_params = [
|
||||
k for k, _ in kwargs.items()
|
||||
if k not in processor_params and k not in quiet_params
|
||||
]
|
||||
unexpected_params = [k for k, _ in kwargs.items() if k not in processor_params and k not in quiet_params]
|
||||
if unexpected_params:
|
||||
logger.warning(
|
||||
f"Parameters {unexpected_params} are not expected by {self.processor.__class__.__name__} and will be ignored."
|
||||
)
|
||||
|
||||
|
||||
# Filter to only expected parameters
|
||||
filtered_kwargs = {k: v for k, v in kwargs.items() if k in processor_params}
|
||||
|
||||
|
||||
# Process with appropriate processor
|
||||
return self.processor(
|
||||
self,
|
||||
@@ -368,4 +247,5 @@ class SD3Attention(nn.Module, AttentionModuleMixin):
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
**filtered_kwargs,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@@ -53,10 +53,11 @@ class AttentionModuleMixin:
|
||||
This mixin adds functionality to set different attention processors, handle attention masks, compute attention
|
||||
scores, and manage projections.
|
||||
"""
|
||||
|
||||
|
||||
# Default processor classes to be overridden by subclasses
|
||||
default_processor_class = None
|
||||
fused_processor_class = None
|
||||
default_processor_cls = None
|
||||
fused_processor_cls = None
|
||||
_available_processors = None
|
||||
|
||||
def set_use_npu_flash_attention(self, use_npu_flash_attention: bool) -> None:
|
||||
"""
|
||||
@@ -115,7 +116,7 @@ class AttentionModuleMixin:
|
||||
else AttnProcessor()
|
||||
)
|
||||
self.set_processor(processor)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def fuse_projections(self, fuse=True):
|
||||
"""
|
||||
@@ -178,7 +179,7 @@ class AttentionModuleMixin:
|
||||
self.to_added_qkv.bias.copy_(concatenated_bias)
|
||||
|
||||
self.fused_projections = fuse
|
||||
|
||||
|
||||
# Update processor based on fusion state
|
||||
processor_class = self.fused_processor_class if fuse else self.default_processor_class
|
||||
if processor_class is not None:
|
||||
@@ -2163,554 +2164,6 @@ class FusedAuraFlowAttnProcessorSDPA:
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FluxAttnProcessorSDPA:
|
||||
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("FluxAttnProcessorSDPA requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
|
||||
# `sample` projections.
|
||||
query = attn.to_q(hidden_states)
|
||||
key = attn.to_k(hidden_states)
|
||||
value = attn.to_v(hidden_states)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
||||
if encoder_hidden_states is not None:
|
||||
# `context` projections.
|
||||
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
||||
|
||||
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
|
||||
if attn.norm_added_q is not None:
|
||||
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
||||
if attn.norm_added_k is not None:
|
||||
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
||||
|
||||
# attention
|
||||
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
||||
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
||||
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
||||
|
||||
if image_rotary_emb is not None:
|
||||
from .embeddings import apply_rotary_emb
|
||||
|
||||
query = apply_rotary_emb(query, image_rotary_emb)
|
||||
key = apply_rotary_emb(key, image_rotary_emb)
|
||||
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_hidden_states, hidden_states = (
|
||||
hidden_states[:, : encoder_hidden_states.shape[1]],
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :],
|
||||
)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
else:
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FluxAttnProcessorSDPA_NPU:
|
||||
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError(
|
||||
"FluxAttnProcessorSDPA_NPU requires PyTorch 2.0 and torch NPU, to use it, please upgrade PyTorch to 2.0 and install torch NPU"
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
|
||||
# `sample` projections.
|
||||
query = attn.to_q(hidden_states)
|
||||
key = attn.to_k(hidden_states)
|
||||
value = attn.to_v(hidden_states)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
||||
if encoder_hidden_states is not None:
|
||||
# `context` projections.
|
||||
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
||||
|
||||
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
|
||||
if attn.norm_added_q is not None:
|
||||
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
||||
if attn.norm_added_k is not None:
|
||||
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
||||
|
||||
# attention
|
||||
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
||||
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
||||
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
||||
|
||||
if image_rotary_emb is not None:
|
||||
from .embeddings import apply_rotary_emb
|
||||
|
||||
query = apply_rotary_emb(query, image_rotary_emb)
|
||||
key = apply_rotary_emb(key, image_rotary_emb)
|
||||
|
||||
if query.dtype in (torch.float16, torch.bfloat16):
|
||||
hidden_states = torch_npu.npu_fusion_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
attn.heads,
|
||||
input_layout="BNSD",
|
||||
pse=None,
|
||||
scale=1.0 / math.sqrt(query.shape[-1]),
|
||||
pre_tockens=65536,
|
||||
next_tockens=65536,
|
||||
keep_prob=1.0,
|
||||
sync=False,
|
||||
inner_precise=0,
|
||||
)[0]
|
||||
else:
|
||||
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_hidden_states, hidden_states = (
|
||||
hidden_states[:, : encoder_hidden_states.shape[1]],
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :],
|
||||
)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
else:
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FusedFluxAttnProcessorSDPA:
|
||||
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError(
|
||||
"FusedFluxAttnProcessorSDPA requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
|
||||
# `sample` projections.
|
||||
qkv = attn.to_qkv(hidden_states)
|
||||
split_size = qkv.shape[-1] // 3
|
||||
query, key, value = torch.split(qkv, split_size, dim=-1)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
||||
# `context` projections.
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
|
||||
split_size = encoder_qkv.shape[-1] // 3
|
||||
(
|
||||
encoder_hidden_states_query_proj,
|
||||
encoder_hidden_states_key_proj,
|
||||
encoder_hidden_states_value_proj,
|
||||
) = torch.split(encoder_qkv, split_size, dim=-1)
|
||||
|
||||
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
|
||||
if attn.norm_added_q is not None:
|
||||
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
||||
if attn.norm_added_k is not None:
|
||||
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
||||
|
||||
# attention
|
||||
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
||||
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
||||
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
||||
|
||||
if image_rotary_emb is not None:
|
||||
from .embeddings import apply_rotary_emb
|
||||
|
||||
query = apply_rotary_emb(query, image_rotary_emb)
|
||||
key = apply_rotary_emb(key, image_rotary_emb)
|
||||
|
||||
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_hidden_states, hidden_states = (
|
||||
hidden_states[:, : encoder_hidden_states.shape[1]],
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :],
|
||||
)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
else:
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FusedFluxAttnProcessorSDPA_NPU:
|
||||
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError(
|
||||
"FluxAttnProcessorSDPA_NPU requires PyTorch 2.0 and torch NPU, to use it, please upgrade PyTorch to 2.0, and install torch NPU"
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
|
||||
# `sample` projections.
|
||||
qkv = attn.to_qkv(hidden_states)
|
||||
split_size = qkv.shape[-1] // 3
|
||||
query, key, value = torch.split(qkv, split_size, dim=-1)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
||||
# `context` projections.
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
|
||||
split_size = encoder_qkv.shape[-1] // 3
|
||||
(
|
||||
encoder_hidden_states_query_proj,
|
||||
encoder_hidden_states_key_proj,
|
||||
encoder_hidden_states_value_proj,
|
||||
) = torch.split(encoder_qkv, split_size, dim=-1)
|
||||
|
||||
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
|
||||
if attn.norm_added_q is not None:
|
||||
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
||||
if attn.norm_added_k is not None:
|
||||
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
||||
|
||||
# attention
|
||||
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
||||
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
||||
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
||||
|
||||
if image_rotary_emb is not None:
|
||||
from .embeddings import apply_rotary_emb
|
||||
|
||||
query = apply_rotary_emb(query, image_rotary_emb)
|
||||
key = apply_rotary_emb(key, image_rotary_emb)
|
||||
|
||||
if query.dtype in (torch.float16, torch.bfloat16):
|
||||
hidden_states = torch_npu.npu_fusion_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
attn.heads,
|
||||
input_layout="BNSD",
|
||||
pse=None,
|
||||
scale=1.0 / math.sqrt(query.shape[-1]),
|
||||
pre_tockens=65536,
|
||||
next_tockens=65536,
|
||||
keep_prob=1.0,
|
||||
sync=False,
|
||||
inner_precise=0,
|
||||
)[0]
|
||||
else:
|
||||
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_hidden_states, hidden_states = (
|
||||
hidden_states[:, : encoder_hidden_states.shape[1]],
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :],
|
||||
)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
else:
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FluxIPAdapterJointAttnProcessorSDPA(torch.nn.Module):
|
||||
"""Flux Attention processor for IP-Adapter."""
|
||||
|
||||
def __init__(
|
||||
self, hidden_size: int, cross_attention_dim: int, num_tokens=(4,), scale=1.0, device=None, dtype=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError(
|
||||
f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
||||
)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.cross_attention_dim = cross_attention_dim
|
||||
|
||||
if not isinstance(num_tokens, (tuple, list)):
|
||||
num_tokens = [num_tokens]
|
||||
|
||||
if not isinstance(scale, list):
|
||||
scale = [scale] * len(num_tokens)
|
||||
if len(scale) != len(num_tokens):
|
||||
raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
|
||||
self.scale = scale
|
||||
|
||||
self.to_k_ip = nn.ModuleList(
|
||||
[
|
||||
nn.Linear(cross_attention_dim, hidden_size, bias=True, device=device, dtype=dtype)
|
||||
for _ in range(len(num_tokens))
|
||||
]
|
||||
)
|
||||
self.to_v_ip = nn.ModuleList(
|
||||
[
|
||||
nn.Linear(cross_attention_dim, hidden_size, bias=True, device=device, dtype=dtype)
|
||||
for _ in range(len(num_tokens))
|
||||
]
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
ip_hidden_states: Optional[List[torch.Tensor]] = None,
|
||||
ip_adapter_masks: Optional[torch.Tensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
|
||||
# `sample` projections.
|
||||
hidden_states_query_proj = attn.to_q(hidden_states)
|
||||
key = attn.to_k(hidden_states)
|
||||
value = attn.to_v(hidden_states)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
hidden_states_query_proj = hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
hidden_states_query_proj = attn.norm_q(hidden_states_query_proj)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
||||
if encoder_hidden_states is not None:
|
||||
# `context` projections.
|
||||
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
||||
|
||||
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
|
||||
if attn.norm_added_q is not None:
|
||||
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
||||
if attn.norm_added_k is not None:
|
||||
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
||||
|
||||
# attention
|
||||
query = torch.cat([encoder_hidden_states_query_proj, hidden_states_query_proj], dim=2)
|
||||
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
||||
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
||||
|
||||
if image_rotary_emb is not None:
|
||||
from .embeddings import apply_rotary_emb
|
||||
|
||||
query = apply_rotary_emb(query, image_rotary_emb)
|
||||
key = apply_rotary_emb(key, image_rotary_emb)
|
||||
|
||||
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_hidden_states, hidden_states = (
|
||||
hidden_states[:, : encoder_hidden_states.shape[1]],
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :],
|
||||
)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
# IP-adapter
|
||||
ip_query = hidden_states_query_proj
|
||||
ip_attn_output = torch.zeros_like(hidden_states)
|
||||
|
||||
for current_ip_hidden_states, scale, to_k_ip, to_v_ip in zip(
|
||||
ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip
|
||||
):
|
||||
ip_key = to_k_ip(current_ip_hidden_states)
|
||||
ip_value = to_v_ip(current_ip_hidden_states)
|
||||
|
||||
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
current_ip_hidden_states = F.scaled_dot_product_attention(
|
||||
ip_query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape(
|
||||
batch_size, -1, attn.heads * head_dim
|
||||
)
|
||||
current_ip_hidden_states = current_ip_hidden_states.to(ip_query.dtype)
|
||||
ip_attn_output += scale * current_ip_hidden_states
|
||||
|
||||
return hidden_states, encoder_hidden_states, ip_attn_output
|
||||
else:
|
||||
return hidden_states
|
||||
|
||||
|
||||
class CogVideoXAttnProcessorSDPA:
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
|
||||
|
||||
@@ -47,11 +47,11 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
class FluxAttnProcessor:
|
||||
"""Flux-specific attention processor that implements normalized attention with support for rotary embeddings."""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("FluxAttnProcessor requires PyTorch 2.0, please upgrade PyTorch.")
|
||||
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn,
|
||||
@@ -62,10 +62,10 @@ class FluxAttnProcessor:
|
||||
**kwargs,
|
||||
) -> torch.FloatTensor:
|
||||
batch_size, seq_len, _ = hidden_states.shape
|
||||
|
||||
|
||||
# Project query from hidden states
|
||||
query = attn.to_q(hidden_states)
|
||||
|
||||
|
||||
# Handle cross-attention vs self-attention
|
||||
if encoder_hidden_states is None:
|
||||
key = attn.to_k(hidden_states)
|
||||
@@ -73,71 +73,76 @@ class FluxAttnProcessor:
|
||||
else:
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
||||
|
||||
# If we have added_kv_proj_dim, handle additional projections
|
||||
if hasattr(attn, "added_kv_proj_dim") and attn.added_kv_proj_dim is not None:
|
||||
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
||||
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
||||
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
||||
|
||||
|
||||
# Reshape
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
|
||||
encoder_query = encoder_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
encoder_key = encoder_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
encoder_value = encoder_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
|
||||
# Apply normalization if available
|
||||
if hasattr(attn, "norm_added_q") and attn.norm_added_q is not None:
|
||||
encoder_query = attn.norm_added_q(encoder_query)
|
||||
if hasattr(attn, "norm_added_k") and attn.norm_added_k is not None:
|
||||
encoder_key = attn.norm_added_k(encoder_key)
|
||||
|
||||
|
||||
# Reshape for multi-head attention
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
|
||||
# Apply normalization if available
|
||||
if hasattr(attn, "norm_q") and attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if hasattr(attn, "norm_k") and attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
|
||||
# Handle rotary embeddings if provided
|
||||
if image_rotary_emb is not None:
|
||||
from ...models.embeddings import apply_rotary_emb
|
||||
|
||||
query = apply_rotary_emb(query, image_rotary_emb)
|
||||
# Only apply to key in self-attention
|
||||
if encoder_hidden_states is None:
|
||||
key = apply_rotary_emb(key, image_rotary_emb)
|
||||
|
||||
|
||||
# Concatenate encoder projections if we have them
|
||||
if encoder_hidden_states is not None and hasattr(attn, "added_kv_proj_dim") and attn.added_kv_proj_dim is not None:
|
||||
if (
|
||||
encoder_hidden_states is not None
|
||||
and hasattr(attn, "added_kv_proj_dim")
|
||||
and attn.added_kv_proj_dim is not None
|
||||
):
|
||||
# Concatenate for joint attention
|
||||
query = torch.cat([encoder_query, query], dim=2)
|
||||
key = torch.cat([encoder_key, key], dim=2)
|
||||
value = torch.cat([encoder_value, value], dim=2)
|
||||
|
||||
|
||||
# Compute attention
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
|
||||
# Reshape back
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
|
||||
# Split back if we did joint attention
|
||||
if (
|
||||
encoder_hidden_states is not None
|
||||
and hasattr(attn, "added_kv_proj_dim")
|
||||
encoder_hidden_states is not None
|
||||
and hasattr(attn, "added_kv_proj_dim")
|
||||
and attn.added_kv_proj_dim is not None
|
||||
and hasattr(attn, "to_add_out")
|
||||
and hasattr(attn, "to_add_out")
|
||||
and attn.to_add_out is not None
|
||||
):
|
||||
context_len = encoder_hidden_states.shape[1]
|
||||
@@ -145,18 +150,18 @@ class FluxAttnProcessor:
|
||||
hidden_states[:, :context_len],
|
||||
hidden_states[:, context_len:],
|
||||
)
|
||||
|
||||
|
||||
# Project output
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
else:
|
||||
# Project output
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
@@ -164,11 +169,11 @@ class FluxAttnProcessor:
|
||||
class FluxAttention(nn.Module, AttentionModuleMixin):
|
||||
"""
|
||||
Specialized attention implementation for Flux models.
|
||||
|
||||
|
||||
This attention module provides optimized implementation for Flux models,
|
||||
with support for RMSNorm, rotary embeddings, and added key/value projections.
|
||||
"""
|
||||
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
query_dim: int,
|
||||
@@ -180,51 +185,48 @@ class FluxAttention(nn.Module, AttentionModuleMixin):
|
||||
added_kv_proj_dim: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
||||
# Core parameters
|
||||
self.inner_dim = dim_head * heads
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
self.scale = dim_head**-0.5
|
||||
self.use_bias = bias
|
||||
self.scale_qk = True # Flux always uses scaled QK
|
||||
|
||||
|
||||
# Set cross-attention parameters
|
||||
self.is_cross_attention = cross_attention_dim is not None
|
||||
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
||||
|
||||
|
||||
# Query, Key, Value projections
|
||||
self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias)
|
||||
self.to_k = nn.Linear(self.cross_attention_dim, self.inner_dim, bias=bias)
|
||||
self.to_v = nn.Linear(self.cross_attention_dim, self.inner_dim, bias=bias)
|
||||
|
||||
|
||||
# RMSNorm for Flux models
|
||||
self.norm_q = RMSNorm(dim_head, eps=1e-6)
|
||||
self.norm_k = RMSNorm(dim_head, eps=1e-6)
|
||||
|
||||
|
||||
# Optional added key/value projections for joint attention
|
||||
self.added_kv_proj_dim = added_kv_proj_dim
|
||||
if added_kv_proj_dim is not None:
|
||||
self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=bias)
|
||||
self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=bias)
|
||||
self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=bias)
|
||||
|
||||
|
||||
# Normalization for added projections
|
||||
self.norm_added_q = RMSNorm(dim_head, eps=1e-6)
|
||||
self.norm_added_k = RMSNorm(dim_head, eps=1e-6)
|
||||
self.added_proj_bias = bias
|
||||
|
||||
|
||||
# Output projection for context
|
||||
self.to_add_out = nn.Linear(self.inner_dim, query_dim, bias=bias)
|
||||
|
||||
|
||||
# Output projection and dropout
|
||||
self.to_out = nn.ModuleList([
|
||||
nn.Linear(self.inner_dim, query_dim, bias=bias),
|
||||
nn.Dropout(dropout)
|
||||
])
|
||||
|
||||
self.to_out = nn.ModuleList([nn.Linear(self.inner_dim, query_dim, bias=bias), nn.Dropout(dropout)])
|
||||
|
||||
# Set processor
|
||||
self.processor = FluxAttnProcessor()
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
@@ -235,13 +237,13 @@ class FluxAttention(nn.Module, AttentionModuleMixin):
|
||||
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
||||
"""
|
||||
Forward pass for Flux attention.
|
||||
|
||||
|
||||
Args:
|
||||
hidden_states: Input hidden states
|
||||
encoder_hidden_states: Optional encoder hidden states for cross-attention
|
||||
attention_mask: Optional attention mask
|
||||
image_rotary_emb: Optional rotary embeddings for image tokens
|
||||
|
||||
|
||||
Returns:
|
||||
Output hidden states, and optionally encoder hidden states for joint attention
|
||||
"""
|
||||
@@ -303,6 +305,670 @@ class FluxSingleTransformerBlock(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FluxAttnProcessorSDPA:
|
||||
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("FluxAttnProcessorSDPA requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
|
||||
# `sample` projections.
|
||||
query = attn.to_q(hidden_states)
|
||||
key = attn.to_k(hidden_states)
|
||||
value = attn.to_v(hidden_states)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
||||
if encoder_hidden_states is not None:
|
||||
# `context` projections.
|
||||
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
||||
|
||||
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
|
||||
if attn.norm_added_q is not None:
|
||||
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
||||
if attn.norm_added_k is not None:
|
||||
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
||||
|
||||
# attention
|
||||
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
||||
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
||||
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
||||
|
||||
if image_rotary_emb is not None:
|
||||
from .embeddings import apply_rotary_emb
|
||||
|
||||
query = apply_rotary_emb(query, image_rotary_emb)
|
||||
key = apply_rotary_emb(key, image_rotary_emb)
|
||||
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_hidden_states, hidden_states = (
|
||||
hidden_states[:, : encoder_hidden_states.shape[1]],
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :],
|
||||
)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
else:
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FluxAttnProcessorNPU:
|
||||
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError(
|
||||
"FluxAttnProcessorSDPA_NPU requires PyTorch 2.0 and torch NPU, to use it, please upgrade PyTorch to 2.0 and install torch NPU"
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
|
||||
# `sample` projections.
|
||||
query = attn.to_q(hidden_states)
|
||||
key = attn.to_k(hidden_states)
|
||||
value = attn.to_v(hidden_states)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
||||
if encoder_hidden_states is not None:
|
||||
# `context` projections.
|
||||
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
||||
|
||||
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
|
||||
if attn.norm_added_q is not None:
|
||||
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
||||
if attn.norm_added_k is not None:
|
||||
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
||||
|
||||
# attention
|
||||
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
||||
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
||||
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
||||
|
||||
if image_rotary_emb is not None:
|
||||
from .embeddings import apply_rotary_emb
|
||||
|
||||
query = apply_rotary_emb(query, image_rotary_emb)
|
||||
key = apply_rotary_emb(key, image_rotary_emb)
|
||||
|
||||
if query.dtype in (torch.float16, torch.bfloat16):
|
||||
hidden_states = torch_npu.npu_fusion_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
attn.heads,
|
||||
input_layout="BNSD",
|
||||
pse=None,
|
||||
scale=1.0 / math.sqrt(query.shape[-1]),
|
||||
pre_tockens=65536,
|
||||
next_tockens=65536,
|
||||
keep_prob=1.0,
|
||||
sync=False,
|
||||
inner_precise=0,
|
||||
)[0]
|
||||
else:
|
||||
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_hidden_states, hidden_states = (
|
||||
hidden_states[:, : encoder_hidden_states.shape[1]],
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :],
|
||||
)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
else:
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FusedFluxAttnProcessorSDPA:
|
||||
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError(
|
||||
"FusedFluxAttnProcessorSDPA requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
|
||||
# `sample` projections.
|
||||
qkv = attn.to_qkv(hidden_states)
|
||||
split_size = qkv.shape[-1] // 3
|
||||
query, key, value = torch.split(qkv, split_size, dim=-1)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
||||
# `context` projections.
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
|
||||
split_size = encoder_qkv.shape[-1] // 3
|
||||
(
|
||||
encoder_hidden_states_query_proj,
|
||||
encoder_hidden_states_key_proj,
|
||||
encoder_hidden_states_value_proj,
|
||||
) = torch.split(encoder_qkv, split_size, dim=-1)
|
||||
|
||||
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
|
||||
if attn.norm_added_q is not None:
|
||||
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
||||
if attn.norm_added_k is not None:
|
||||
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
||||
|
||||
# attention
|
||||
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
||||
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
||||
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
||||
|
||||
if image_rotary_emb is not None:
|
||||
from .embeddings import apply_rotary_emb
|
||||
|
||||
query = apply_rotary_emb(query, image_rotary_emb)
|
||||
key = apply_rotary_emb(key, image_rotary_emb)
|
||||
|
||||
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_hidden_states, hidden_states = (
|
||||
hidden_states[:, : encoder_hidden_states.shape[1]],
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :],
|
||||
)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
else:
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FusedFluxAttnProcessorNPU:
|
||||
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError(
|
||||
"FluxAttnProcessorSDPA_NPU requires PyTorch 2.0 and torch NPU, to use it, please upgrade PyTorch to 2.0, and install torch NPU"
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
|
||||
# `sample` projections.
|
||||
qkv = attn.to_qkv(hidden_states)
|
||||
split_size = qkv.shape[-1] // 3
|
||||
query, key, value = torch.split(qkv, split_size, dim=-1)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
||||
# `context` projections.
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
|
||||
split_size = encoder_qkv.shape[-1] // 3
|
||||
(
|
||||
encoder_hidden_states_query_proj,
|
||||
encoder_hidden_states_key_proj,
|
||||
encoder_hidden_states_value_proj,
|
||||
) = torch.split(encoder_qkv, split_size, dim=-1)
|
||||
|
||||
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
|
||||
if attn.norm_added_q is not None:
|
||||
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
||||
if attn.norm_added_k is not None:
|
||||
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
||||
|
||||
# attention
|
||||
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
||||
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
||||
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
||||
|
||||
if image_rotary_emb is not None:
|
||||
from .embeddings import apply_rotary_emb
|
||||
|
||||
query = apply_rotary_emb(query, image_rotary_emb)
|
||||
key = apply_rotary_emb(key, image_rotary_emb)
|
||||
|
||||
if query.dtype in (torch.float16, torch.bfloat16):
|
||||
hidden_states = torch_npu.npu_fusion_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
attn.heads,
|
||||
input_layout="BNSD",
|
||||
pse=None,
|
||||
scale=1.0 / math.sqrt(query.shape[-1]),
|
||||
pre_tockens=65536,
|
||||
next_tockens=65536,
|
||||
keep_prob=1.0,
|
||||
sync=False,
|
||||
inner_precise=0,
|
||||
)[0]
|
||||
else:
|
||||
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_hidden_states, hidden_states = (
|
||||
hidden_states[:, : encoder_hidden_states.shape[1]],
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :],
|
||||
)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
else:
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FluxIPAdapterJointAttnProcessorSDPA(torch.nn.Module):
|
||||
"""Flux Attention processor for IP-Adapter."""
|
||||
|
||||
def __init__(
|
||||
self, hidden_size: int, cross_attention_dim: int, num_tokens=(4,), scale=1.0, device=None, dtype=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError(
|
||||
f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
||||
)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.cross_attention_dim = cross_attention_dim
|
||||
|
||||
if not isinstance(num_tokens, (tuple, list)):
|
||||
num_tokens = [num_tokens]
|
||||
|
||||
if not isinstance(scale, list):
|
||||
scale = [scale] * len(num_tokens)
|
||||
if len(scale) != len(num_tokens):
|
||||
raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
|
||||
self.scale = scale
|
||||
|
||||
self.to_k_ip = nn.ModuleList(
|
||||
[
|
||||
nn.Linear(cross_attention_dim, hidden_size, bias=True, device=device, dtype=dtype)
|
||||
for _ in range(len(num_tokens))
|
||||
]
|
||||
)
|
||||
self.to_v_ip = nn.ModuleList(
|
||||
[
|
||||
nn.Linear(cross_attention_dim, hidden_size, bias=True, device=device, dtype=dtype)
|
||||
for _ in range(len(num_tokens))
|
||||
]
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
ip_hidden_states: Optional[List[torch.Tensor]] = None,
|
||||
ip_adapter_masks: Optional[torch.Tensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
|
||||
# `sample` projections.
|
||||
hidden_states_query_proj = attn.to_q(hidden_states)
|
||||
key = attn.to_k(hidden_states)
|
||||
value = attn.to_v(hidden_states)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
hidden_states_query_proj = hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
hidden_states_query_proj = attn.norm_q(hidden_states_query_proj)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
||||
if encoder_hidden_states is not None:
|
||||
# `context` projections.
|
||||
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
||||
|
||||
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
|
||||
if attn.norm_added_q is not None:
|
||||
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
||||
if attn.norm_added_k is not None:
|
||||
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
||||
|
||||
# attention
|
||||
query = torch.cat([encoder_hidden_states_query_proj, hidden_states_query_proj], dim=2)
|
||||
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
||||
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
||||
|
||||
if image_rotary_emb is not None:
|
||||
from .embeddings import apply_rotary_emb
|
||||
|
||||
query = apply_rotary_emb(query, image_rotary_emb)
|
||||
key = apply_rotary_emb(key, image_rotary_emb)
|
||||
|
||||
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_hidden_states, hidden_states = (
|
||||
hidden_states[:, : encoder_hidden_states.shape[1]],
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :],
|
||||
)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
# IP-adapter
|
||||
ip_query = hidden_states_query_proj
|
||||
ip_attn_output = torch.zeros_like(hidden_states)
|
||||
|
||||
for current_ip_hidden_states, scale, to_k_ip, to_v_ip in zip(
|
||||
ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip
|
||||
):
|
||||
ip_key = to_k_ip(current_ip_hidden_states)
|
||||
ip_value = to_v_ip(current_ip_hidden_states)
|
||||
|
||||
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
current_ip_hidden_states = F.scaled_dot_product_attention(
|
||||
ip_query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape(
|
||||
batch_size, -1, attn.heads * head_dim
|
||||
)
|
||||
current_ip_hidden_states = current_ip_hidden_states.to(ip_query.dtype)
|
||||
ip_attn_output += scale * current_ip_hidden_states
|
||||
|
||||
return hidden_states, encoder_hidden_states, ip_attn_output
|
||||
else:
|
||||
return hidden_states
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class FluxAttention(nn.Module, AttentionModuleMixin):
|
||||
"""
|
||||
|
||||
Args:
|
||||
query_dim (`int`): Number of channels in query.
|
||||
cross_attention_dim (`int`, *optional*): Number of channels in encoder states.
|
||||
heads (`int`, defaults to 8): Number of attention heads.
|
||||
dim_head (`int`, defaults to 64): Dimension of each attention head.
|
||||
dropout (`float`, defaults to 0.0): Dropout probability.
|
||||
bias (`bool`, defaults to False): Whether to use bias in linear projections.
|
||||
added_kv_proj_dim (`int`, *optional*): Dimension for added key/value projections.
|
||||
"""
|
||||
|
||||
# Set Flux-specific processor classes
|
||||
default_processor_cls = FluxAttnProcessorSDPA
|
||||
fused_processor_cls = FusedFluxAttnProcessorSDPA
|
||||
|
||||
_available_processors = [
|
||||
FluxAttnProcessorSDPA,
|
||||
FusedFluxAttnProcessorSDPA,
|
||||
FluxAttnProcessorNPU,
|
||||
FusedFluxAttnProcessorNPU,
|
||||
FluxIPAdapterJointAttnProcessorSDPA,
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
query_dim: int,
|
||||
cross_attention_dim: Optional[int] = None,
|
||||
heads: int = 8,
|
||||
dim_head: int = 64,
|
||||
dropout: float = 0.0,
|
||||
bias: bool = False,
|
||||
added_kv_proj_dim: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Core parameters
|
||||
self.inner_dim = dim_head * heads
|
||||
self.query_dim = query_dim
|
||||
self.heads = heads
|
||||
self.scale = dim_head**-0.5
|
||||
self.use_bias = bias
|
||||
self.scale_qk = True # Flux always uses scale_qk
|
||||
|
||||
# Cross-attention setup
|
||||
self.is_cross_attention = cross_attention_dim is not None
|
||||
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
||||
|
||||
# Projections
|
||||
self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias)
|
||||
self.to_k = nn.Linear(self.cross_attention_dim, self.inner_dim, bias=bias)
|
||||
self.to_v = nn.Linear(self.cross_attention_dim, self.inner_dim, bias=bias)
|
||||
|
||||
# Flux-specific normalization
|
||||
self.norm_q = RMSNorm(dim_head, eps=1e-6)
|
||||
self.norm_k = RMSNorm(dim_head, eps=1e-6)
|
||||
|
||||
# Added projections for cross-attention
|
||||
self.added_kv_proj_dim = added_kv_proj_dim
|
||||
if added_kv_proj_dim is not None:
|
||||
self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=bias)
|
||||
self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=bias)
|
||||
self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=bias)
|
||||
|
||||
# Normalization for added projections
|
||||
self.norm_added_q = RMSNorm(dim_head, eps=1e-6)
|
||||
self.norm_added_k = RMSNorm(dim_head, eps=1e-6)
|
||||
self.added_proj_bias = bias
|
||||
|
||||
# Output projection
|
||||
self.to_out = nn.ModuleList([nn.Linear(self.inner_dim, query_dim, bias=bias), nn.Dropout(dropout)])
|
||||
|
||||
# For cross-attention with added projections
|
||||
if added_kv_proj_dim is not None:
|
||||
self.to_add_out = nn.Linear(self.inner_dim, query_dim, bias=bias)
|
||||
else:
|
||||
self.to_add_out = None
|
||||
|
||||
# Set default processor and fusion state
|
||||
self.fused_projections = False
|
||||
self.set_processor(self.default_processor_class())
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
||||
"""Process attention for Flux model inputs."""
|
||||
# Filter parameters to only those expected by the processor
|
||||
processor_params = inspect.signature(self.processor.__call__).parameters.keys()
|
||||
quiet_params = {"ip_adapter_masks", "ip_hidden_states"}
|
||||
|
||||
# Check for unexpected parameters
|
||||
unexpected_params = [k for k, _ in kwargs.items() if k not in processor_params and k not in quiet_params]
|
||||
if unexpected_params:
|
||||
logger.warning(
|
||||
f"Parameters {unexpected_params} are not expected by {self.processor.__class__.__name__} and will be ignored."
|
||||
)
|
||||
|
||||
# Filter to only expected parameters
|
||||
filtered_kwargs = {k: v for k, v in kwargs.items() if k in processor_params}
|
||||
|
||||
# Process with appropriate processor
|
||||
return self.processor(
|
||||
self,
|
||||
hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
**filtered_kwargs,
|
||||
)
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class FluxTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
|
||||
Reference in New Issue
Block a user