mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[LoRA] feat: lora support for SANA. (#10234)
* feat: lora support for SANA.
* make fix-copies
* rename test class.
* attention_kwargs -> cross_attention_kwargs.
* Revert "attention_kwargs -> cross_attention_kwargs."
This reverts commit 23433bf9bc.
* exhaust 119 max line limit
* sana lora fine-tuning script.
* readme
* add a note about the supported models.
* Apply suggestions from code review
Co-authored-by: Aryan <aryan@huggingface.co>
* style
* docs for attention_kwargs.
* remove lora_scale from pag pipeline.
* copy fix
---------
Co-authored-by: Aryan <aryan@huggingface.co>
This commit is contained in:
127
examples/dreambooth/REAMDE_sana.md
Normal file
127
examples/dreambooth/REAMDE_sana.md
Normal file
@@ -0,0 +1,127 @@
|
||||
# DreamBooth training example for SANA
|
||||
|
||||
[DreamBooth](https://arxiv.org/abs/2208.12242) is a method to personalize text2image models like stable diffusion given just a few (3~5) images of a subject.
|
||||
|
||||
The `train_dreambooth_lora_sana.py` script shows how to implement the training procedure with [LoRA](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) and adapt it for [SANA](https://arxiv.org/abs/2410.10629).
|
||||
|
||||
|
||||
This will also allow us to push the trained model parameters to the Hugging Face Hub platform.
|
||||
|
||||
## Running locally with PyTorch
|
||||
|
||||
### Installing the dependencies
|
||||
|
||||
Before running the scripts, make sure to install the library's training dependencies:
|
||||
|
||||
**Important**
|
||||
|
||||
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/huggingface/diffusers
|
||||
cd diffusers
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
Then cd in the `examples/dreambooth` folder and run
|
||||
```bash
|
||||
pip install -r requirements_sana.txt
|
||||
```
|
||||
|
||||
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:
|
||||
|
||||
```bash
|
||||
accelerate config
|
||||
```
|
||||
|
||||
Or for a default accelerate configuration without answering questions about your environment
|
||||
|
||||
```bash
|
||||
accelerate config default
|
||||
```
|
||||
|
||||
Or if your environment doesn't support an interactive shell (e.g., a notebook)
|
||||
|
||||
```python
|
||||
from accelerate.utils import write_basic_config
|
||||
write_basic_config()
|
||||
```
|
||||
|
||||
When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups.
|
||||
Note also that we use PEFT library as backend for LoRA training, make sure to have `peft>=0.14.0` installed in your environment.
|
||||
|
||||
|
||||
### Dog toy example
|
||||
|
||||
Now let's get our dataset. For this example we will use some dog images: https://huggingface.co/datasets/diffusers/dog-example.
|
||||
|
||||
Let's first download it locally:
|
||||
|
||||
```python
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
local_dir = "./dog"
|
||||
snapshot_download(
|
||||
"diffusers/dog-example",
|
||||
local_dir=local_dir, repo_type="dataset",
|
||||
ignore_patterns=".gitattributes",
|
||||
)
|
||||
```
|
||||
|
||||
This will also allow us to push the trained LoRA parameters to the Hugging Face Hub platform.
|
||||
|
||||
Now, we can launch training using:
|
||||
|
||||
```bash
|
||||
export MODEL_NAME="Efficient-Large-Model/Sana_1600M_1024px_diffusers"
|
||||
export INSTANCE_DIR="dog"
|
||||
export OUTPUT_DIR="trained-sana-lora"
|
||||
|
||||
accelerate launch train_dreambooth_lora_sana.py \
|
||||
--pretrained_model_name_or_path=$MODEL_NAME \
|
||||
--instance_data_dir=$INSTANCE_DIR \
|
||||
--output_dir=$OUTPUT_DIR \
|
||||
--mixed_precision="bf16" \
|
||||
--instance_prompt="a photo of sks dog" \
|
||||
--resolution=1024 \
|
||||
--train_batch_size=1 \
|
||||
--gradient_accumulation_steps=4 \
|
||||
--use_8bit_adam \
|
||||
--learning_rate=1e-4 \
|
||||
--report_to="wandb" \
|
||||
--lr_scheduler="constant" \
|
||||
--lr_warmup_steps=0 \
|
||||
--max_train_steps=500 \
|
||||
--validation_prompt="A photo of sks dog in a bucket" \
|
||||
--validation_epochs=25 \
|
||||
--seed="0" \
|
||||
--push_to_hub
|
||||
```
|
||||
|
||||
For using `push_to_hub`, make you're logged into your Hugging Face account:
|
||||
|
||||
```bash
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
To better track our training experiments, we're using the following flags in the command above:
|
||||
|
||||
* `report_to="wandb` will ensure the training runs are tracked on [Weights and Biases](https://wandb.ai/site). To use it, be sure to install `wandb` with `pip install wandb`. Don't forget to call `wandb login <your_api_key>` before training if you haven't done it before.
|
||||
* `validation_prompt` and `validation_epochs` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected.
|
||||
|
||||
## Notes
|
||||
|
||||
Additionally, we welcome you to explore the following CLI arguments:
|
||||
|
||||
* `--lora_layers`: The transformer modules to apply LoRA training on. Please specify the layers in a comma seperated. E.g. - "to_k,to_q,to_v" will result in lora training of attention layers only.
|
||||
* `--complex_human_instruction`: Instructions for complex human attention as shown in [here](https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55).
|
||||
* `--max_sequence_length`: Maximum sequence length to use for text embeddings.
|
||||
|
||||
|
||||
We provide several options for optimizing memory optimization:
|
||||
|
||||
* `--offload`: When enabled, we will offload the text encoder and VAE to CPU, when they are not used.
|
||||
* `cache_latents`: When enabled, we will pre-compute the latents from the input images with the VAE and remove the VAE from memory once done.
|
||||
* `--use_8bit_adam`: When enabled, we will use the 8bit version of AdamW provided by the `bitsandbytes` library.
|
||||
|
||||
Refer to the [official documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/sana) of the `SanaPipeline` to know more about the models available under the SANA family and their preferred dtypes during inference.
|
||||
8
examples/dreambooth/requirements_sana.txt
Normal file
8
examples/dreambooth/requirements_sana.txt
Normal file
@@ -0,0 +1,8 @@
|
||||
accelerate>=1.0.0
|
||||
torchvision
|
||||
transformers>=4.47.0
|
||||
ftfy
|
||||
tensorboard
|
||||
Jinja2
|
||||
peft>=0.14.0
|
||||
sentencepiece
|
||||
1552
examples/dreambooth/train_dreambooth_lora_sana.py
Normal file
1552
examples/dreambooth/train_dreambooth_lora_sana.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -70,6 +70,7 @@ if is_torch_available():
|
||||
"FluxLoraLoaderMixin",
|
||||
"CogVideoXLoraLoaderMixin",
|
||||
"Mochi1LoraLoaderMixin",
|
||||
"SanaLoraLoaderMixin",
|
||||
]
|
||||
_import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"]
|
||||
_import_structure["ip_adapter"] = ["IPAdapterMixin"]
|
||||
@@ -92,6 +93,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
LoraLoaderMixin,
|
||||
LTXVideoLoraLoaderMixin,
|
||||
Mochi1LoraLoaderMixin,
|
||||
SanaLoraLoaderMixin,
|
||||
SD3LoraLoaderMixin,
|
||||
StableDiffusionLoraLoaderMixin,
|
||||
StableDiffusionXLLoraLoaderMixin,
|
||||
|
||||
@@ -3562,6 +3562,314 @@ class LTXVideoLoraLoaderMixin(LoraBaseMixin):
|
||||
super().unfuse_lora(components=components)
|
||||
|
||||
|
||||
class SanaLoraLoaderMixin(LoraBaseMixin):
|
||||
r"""
|
||||
Load LoRA layers into [`SanaTransformer2DModel`]. Specific to [`SanaPipeline`].
|
||||
"""
|
||||
|
||||
_lora_loadable_modules = ["transformer"]
|
||||
transformer_name = TRANSFORMER_NAME
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
|
||||
def lora_state_dict(
|
||||
cls,
|
||||
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Return state dict for lora weights and the network alphas.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
We support loading A1111 formatted LoRA checkpoints in a limited capacity.
|
||||
|
||||
This function is experimental and might change in the future.
|
||||
|
||||
</Tip>
|
||||
|
||||
Parameters:
|
||||
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
||||
Can be either:
|
||||
|
||||
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
||||
the Hub.
|
||||
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
||||
with [`ModelMixin.save_pretrained`].
|
||||
- A [torch state
|
||||
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
||||
|
||||
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
||||
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
||||
is not used.
|
||||
force_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
||||
cached versions if they exist.
|
||||
|
||||
proxies (`Dict[str, str]`, *optional*):
|
||||
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
||||
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
||||
allowed by Git.
|
||||
subfolder (`str`, *optional*, defaults to `""`):
|
||||
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
||||
|
||||
"""
|
||||
# Load the main state dict first which has the LoRA layers for either of
|
||||
# transformer and text encoder or both.
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
subfolder = kwargs.pop("subfolder", None)
|
||||
weight_name = kwargs.pop("weight_name", None)
|
||||
use_safetensors = kwargs.pop("use_safetensors", None)
|
||||
|
||||
allow_pickle = False
|
||||
if use_safetensors is None:
|
||||
use_safetensors = True
|
||||
allow_pickle = True
|
||||
|
||||
user_agent = {
|
||||
"file_type": "attn_procs_weights",
|
||||
"framework": "pytorch",
|
||||
}
|
||||
|
||||
state_dict = _fetch_state_dict(
|
||||
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
|
||||
weight_name=weight_name,
|
||||
use_safetensors=use_safetensors,
|
||||
local_files_only=local_files_only,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
allow_pickle=allow_pickle,
|
||||
)
|
||||
|
||||
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
|
||||
if is_dora_scale_present:
|
||||
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
|
||||
logger.warning(warn_msg)
|
||||
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
|
||||
|
||||
return state_dict
|
||||
|
||||
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
|
||||
def load_lora_weights(
|
||||
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
|
||||
):
|
||||
"""
|
||||
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
|
||||
`self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
|
||||
[`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
|
||||
dict is loaded into `self.transformer`.
|
||||
|
||||
Parameters:
|
||||
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
kwargs (`dict`, *optional*):
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
raise ValueError("PEFT backend is required for this method.")
|
||||
|
||||
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
|
||||
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
|
||||
raise ValueError(
|
||||
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
||||
)
|
||||
|
||||
# if a dict is passed, copy it instead of modifying it inplace
|
||||
if isinstance(pretrained_model_name_or_path_or_dict, dict):
|
||||
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
|
||||
|
||||
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
|
||||
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
|
||||
|
||||
is_correct_format = all("lora" in key for key in state_dict.keys())
|
||||
if not is_correct_format:
|
||||
raise ValueError("Invalid LoRA checkpoint.")
|
||||
|
||||
self.load_lora_into_transformer(
|
||||
state_dict,
|
||||
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
|
||||
adapter_name=adapter_name,
|
||||
_pipeline=self,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->SanaTransformer2DModel
|
||||
def load_lora_into_transformer(
|
||||
cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
|
||||
):
|
||||
"""
|
||||
This will load the LoRA layers specified in `state_dict` into `transformer`.
|
||||
|
||||
Parameters:
|
||||
state_dict (`dict`):
|
||||
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
|
||||
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
|
||||
encoder lora layers.
|
||||
transformer (`SanaTransformer2DModel`):
|
||||
The Transformer model to load the LoRA layers into.
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
"""
|
||||
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
|
||||
raise ValueError(
|
||||
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
||||
)
|
||||
|
||||
# Load the layers corresponding to transformer.
|
||||
logger.info(f"Loading {cls.transformer_name}.")
|
||||
transformer.load_lora_adapter(
|
||||
state_dict,
|
||||
network_alphas=None,
|
||||
adapter_name=adapter_name,
|
||||
_pipeline=_pipeline,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
|
||||
def save_lora_weights(
|
||||
cls,
|
||||
save_directory: Union[str, os.PathLike],
|
||||
transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
||||
is_main_process: bool = True,
|
||||
weight_name: str = None,
|
||||
save_function: Callable = None,
|
||||
safe_serialization: bool = True,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the UNet and text encoder.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
"""
|
||||
state_dict = {}
|
||||
|
||||
if not transformer_lora_layers:
|
||||
raise ValueError("You must pass `transformer_lora_layers`.")
|
||||
|
||||
if transformer_lora_layers:
|
||||
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
|
||||
|
||||
# Save the model
|
||||
cls.write_lora_layers(
|
||||
state_dict=state_dict,
|
||||
save_directory=save_directory,
|
||||
is_main_process=is_main_process,
|
||||
weight_name=weight_name,
|
||||
save_function=save_function,
|
||||
safe_serialization=safe_serialization,
|
||||
)
|
||||
|
||||
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.fuse_lora with unet->transformer
|
||||
def fuse_lora(
|
||||
self,
|
||||
components: List[str] = ["transformer", "text_encoder"],
|
||||
lora_scale: float = 1.0,
|
||||
safe_fusing: bool = False,
|
||||
adapter_names: Optional[List[str]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This is an experimental API.
|
||||
|
||||
</Tip>
|
||||
|
||||
Args:
|
||||
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
|
||||
lora_scale (`float`, defaults to 1.0):
|
||||
Controls how much to influence the outputs with the LoRA parameters.
|
||||
safe_fusing (`bool`, defaults to `False`):
|
||||
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
|
||||
adapter_names (`List[str]`, *optional*):
|
||||
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
|
||||
|
||||
Example:
|
||||
|
||||
```py
|
||||
from diffusers import DiffusionPipeline
|
||||
import torch
|
||||
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
|
||||
pipeline.fuse_lora(lora_scale=0.7)
|
||||
```
|
||||
"""
|
||||
super().fuse_lora(
|
||||
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
|
||||
)
|
||||
|
||||
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.unfuse_lora with unet->transformer
|
||||
def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
|
||||
r"""
|
||||
Reverses the effect of
|
||||
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This is an experimental API.
|
||||
|
||||
</Tip>
|
||||
|
||||
Args:
|
||||
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
|
||||
unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
|
||||
unfuse_text_encoder (`bool`, defaults to `True`):
|
||||
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
|
||||
LoRA parameters then it won't have any effect.
|
||||
"""
|
||||
super().unfuse_lora(components=components)
|
||||
|
||||
|
||||
class LoraLoaderMixin(StableDiffusionLoraLoaderMixin):
|
||||
def __init__(self, *args, **kwargs):
|
||||
deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead."
|
||||
|
||||
@@ -54,6 +54,7 @@ _SET_ADAPTER_SCALE_FN_MAPPING = {
|
||||
"CogVideoXTransformer3DModel": lambda model_cls, weights: weights,
|
||||
"MochiTransformer3DModel": lambda model_cls, weights: weights,
|
||||
"LTXVideoTransformer3DModel": lambda model_cls, weights: weights,
|
||||
"SanaTransformer2DModel": lambda model_cls, weights: weights,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -18,7 +18,8 @@ import torch
|
||||
from torch import nn
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...utils import is_torch_version, logging
|
||||
from ...loaders import PeftAdapterMixin
|
||||
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
||||
from ..attention_processor import (
|
||||
Attention,
|
||||
AttentionProcessor,
|
||||
@@ -180,7 +181,7 @@ class SanaTransformerBlock(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class SanaTransformer2DModel(ModelMixin, ConfigMixin):
|
||||
class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
r"""
|
||||
A 2D Transformer model introduced in [Sana](https://huggingface.co/papers/2410.10629) family of models.
|
||||
|
||||
@@ -363,8 +364,24 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin):
|
||||
timestep: torch.LongTensor,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]:
|
||||
if attention_kwargs is not None:
|
||||
attention_kwargs = attention_kwargs.copy()
|
||||
lora_scale = attention_kwargs.pop("scale", 1.0)
|
||||
else:
|
||||
lora_scale = 1.0
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||||
scale_lora_layers(self, lora_scale)
|
||||
else:
|
||||
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
||||
logger.warning(
|
||||
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
||||
)
|
||||
|
||||
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
||||
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
||||
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
||||
@@ -460,6 +477,11 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin):
|
||||
hidden_states = hidden_states.permute(0, 5, 1, 3, 2, 4)
|
||||
output = hidden_states.reshape(batch_size, -1, post_patch_height * p, post_patch_width * p)
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# remove `lora_scale` from each PEFT layer
|
||||
unscale_lora_layers(self, lora_scale)
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
|
||||
@@ -170,7 +170,6 @@ class SanaPAGPipeline(DiffusionPipeline, PAGMixin):
|
||||
pag_attn_processors=(PAGCFGSanaLinearAttnProcessor2_0(), PAGIdentitySanaLinearAttnProcessor2_0()),
|
||||
)
|
||||
|
||||
# Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline.encode_prompt
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
|
||||
@@ -16,21 +16,25 @@ import html
|
||||
import inspect
|
||||
import re
|
||||
import urllib.parse as ul
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
from ...image_processor import PixArtImageProcessor
|
||||
from ...loaders import SanaLoraLoaderMixin
|
||||
from ...models import AutoencoderDC, SanaTransformer2DModel
|
||||
from ...schedulers import DPMSolverMultistepScheduler
|
||||
from ...utils import (
|
||||
BACKENDS_MAPPING,
|
||||
USE_PEFT_BACKEND,
|
||||
is_bs4_available,
|
||||
is_ftfy_available,
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
scale_lora_layers,
|
||||
unscale_lora_layers,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
@@ -130,7 +134,7 @@ def retrieve_timesteps(
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
class SanaPipeline(DiffusionPipeline):
|
||||
class SanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
|
||||
r"""
|
||||
Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629).
|
||||
"""
|
||||
@@ -177,6 +181,7 @@ class SanaPipeline(DiffusionPipeline):
|
||||
clean_caption: bool = False,
|
||||
max_sequence_length: int = 300,
|
||||
complex_human_instruction: Optional[List[str]] = None,
|
||||
lora_scale: Optional[float] = None,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
@@ -210,6 +215,15 @@ class SanaPipeline(DiffusionPipeline):
|
||||
if device is None:
|
||||
device = self._execution_device
|
||||
|
||||
# set lora scale so that monkey patched LoRA
|
||||
# function of text encoder can correctly access it
|
||||
if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin):
|
||||
self._lora_scale = lora_scale
|
||||
|
||||
# dynamically adjust the LoRA scale
|
||||
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
||||
scale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
@@ -305,6 +319,11 @@ class SanaPipeline(DiffusionPipeline):
|
||||
negative_prompt_embeds = None
|
||||
negative_prompt_attention_mask = None
|
||||
|
||||
if self.text_encoder is not None:
|
||||
if isinstance(self, SanaLoraLoaderMixin) and USE_PEFT_BACKEND:
|
||||
# Retrieve the original scale by scaling back the LoRA layers
|
||||
unscale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||||
@@ -554,6 +573,10 @@ class SanaPipeline(DiffusionPipeline):
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def attention_kwargs(self):
|
||||
return self._attention_kwargs
|
||||
|
||||
@property
|
||||
def do_classifier_free_guidance(self):
|
||||
return self._guidance_scale > 1.0
|
||||
@@ -590,6 +613,7 @@ class SanaPipeline(DiffusionPipeline):
|
||||
return_dict: bool = True,
|
||||
clean_caption: bool = True,
|
||||
use_resolution_binning: bool = True,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 300,
|
||||
@@ -662,6 +686,10 @@ class SanaPipeline(DiffusionPipeline):
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
||||
attention_kwargs:
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
clean_caption (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
||||
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
||||
@@ -722,6 +750,7 @@ class SanaPipeline(DiffusionPipeline):
|
||||
)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._attention_kwargs = attention_kwargs
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Default height and width to transformer
|
||||
@@ -733,6 +762,7 @@ class SanaPipeline(DiffusionPipeline):
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None
|
||||
|
||||
# 3. Encode input prompt
|
||||
(
|
||||
@@ -753,6 +783,7 @@ class SanaPipeline(DiffusionPipeline):
|
||||
clean_caption=clean_caption,
|
||||
max_sequence_length=max_sequence_length,
|
||||
complex_human_instruction=complex_human_instruction,
|
||||
lora_scale=lora_scale,
|
||||
)
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
@@ -801,6 +832,7 @@ class SanaPipeline(DiffusionPipeline):
|
||||
encoder_attention_mask=prompt_attention_mask,
|
||||
timestep=timestep,
|
||||
return_dict=False,
|
||||
attention_kwargs=self.attention_kwargs,
|
||||
)[0]
|
||||
noise_pred = noise_pred.float()
|
||||
|
||||
|
||||
138
tests/lora/test_lora_layers_sana.py
Normal file
138
tests/lora/test_lora_layers_sana.py
Normal file
@@ -0,0 +1,138 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import sys
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
from transformers import Gemma2ForCausalLM, GemmaTokenizer
|
||||
|
||||
from diffusers import AutoencoderDC, FlowMatchEulerDiscreteScheduler, SanaPipeline, SanaTransformer2DModel
|
||||
from diffusers.utils.testing_utils import floats_tensor, require_peft_backend
|
||||
|
||||
|
||||
sys.path.append(".")
|
||||
|
||||
from utils import PeftLoraLoaderMixinTests # noqa: E402
|
||||
|
||||
|
||||
@require_peft_backend
|
||||
class SanaLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
|
||||
pipeline_class = SanaPipeline
|
||||
scheduler_cls = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
||||
scheduler_kwargs = {}
|
||||
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
|
||||
transformer_kwargs = {
|
||||
"patch_size": 1,
|
||||
"in_channels": 4,
|
||||
"out_channels": 4,
|
||||
"num_layers": 1,
|
||||
"num_attention_heads": 2,
|
||||
"attention_head_dim": 4,
|
||||
"num_cross_attention_heads": 2,
|
||||
"cross_attention_head_dim": 4,
|
||||
"cross_attention_dim": 8,
|
||||
"caption_channels": 8,
|
||||
"sample_size": 32,
|
||||
}
|
||||
transformer_cls = SanaTransformer2DModel
|
||||
vae_kwargs = {
|
||||
"in_channels": 3,
|
||||
"latent_channels": 4,
|
||||
"attention_head_dim": 2,
|
||||
"encoder_block_types": (
|
||||
"ResBlock",
|
||||
"EfficientViTBlock",
|
||||
),
|
||||
"decoder_block_types": (
|
||||
"ResBlock",
|
||||
"EfficientViTBlock",
|
||||
),
|
||||
"encoder_block_out_channels": (8, 8),
|
||||
"decoder_block_out_channels": (8, 8),
|
||||
"encoder_qkv_multiscales": ((), (5,)),
|
||||
"decoder_qkv_multiscales": ((), (5,)),
|
||||
"encoder_layers_per_block": (1, 1),
|
||||
"decoder_layers_per_block": [1, 1],
|
||||
"downsample_block_type": "conv",
|
||||
"upsample_block_type": "interpolate",
|
||||
"decoder_norm_types": "rms_norm",
|
||||
"decoder_act_fns": "silu",
|
||||
"scaling_factor": 0.41407,
|
||||
}
|
||||
vae_cls = AutoencoderDC
|
||||
tokenizer_cls, tokenizer_id = GemmaTokenizer, "hf-internal-testing/dummy-gemma"
|
||||
text_encoder_cls, text_encoder_id = Gemma2ForCausalLM, "hf-internal-testing/dummy-gemma-for-diffusers"
|
||||
|
||||
@property
|
||||
def output_shape(self):
|
||||
return (1, 32, 32, 3)
|
||||
|
||||
def get_dummy_inputs(self, with_generator=True):
|
||||
batch_size = 1
|
||||
sequence_length = 16
|
||||
num_channels = 4
|
||||
sizes = (32, 32)
|
||||
|
||||
generator = torch.manual_seed(0)
|
||||
noise = floats_tensor((batch_size, num_channels) + sizes)
|
||||
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
|
||||
|
||||
pipeline_inputs = {
|
||||
"prompt": "",
|
||||
"negative_prompt": "",
|
||||
"num_inference_steps": 4,
|
||||
"guidance_scale": 4.5,
|
||||
"height": 32,
|
||||
"width": 32,
|
||||
"max_sequence_length": sequence_length,
|
||||
"output_type": "np",
|
||||
"complex_human_instruction": None,
|
||||
}
|
||||
if with_generator:
|
||||
pipeline_inputs.update({"generator": generator})
|
||||
|
||||
return noise, input_ids, pipeline_inputs
|
||||
|
||||
@unittest.skip("Not supported in Sana.")
|
||||
def test_modify_padding_mode(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Not supported in Mochi.")
|
||||
def test_simple_inference_with_text_denoiser_block_scale(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Not supported in Mochi.")
|
||||
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Text encoder LoRA is not supported in Mochi.")
|
||||
def test_simple_inference_with_partial_text_lora(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Text encoder LoRA is not supported in Mochi.")
|
||||
def test_simple_inference_with_text_lora(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Text encoder LoRA is not supported in Mochi.")
|
||||
def test_simple_inference_with_text_lora_and_scale(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Text encoder LoRA is not supported in Mochi.")
|
||||
def test_simple_inference_with_text_lora_fused(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Text encoder LoRA is not supported in Mochi.")
|
||||
def test_simple_inference_with_text_lora_save_load(self):
|
||||
pass
|
||||
@@ -1545,7 +1545,12 @@ class PeftLoraLoaderMixinTests:
|
||||
"adapter-1"
|
||||
].weight += float("inf")
|
||||
else:
|
||||
pipe.transformer.transformer_blocks[0].attn.to_q.lora_A["adapter-1"].weight += float("inf")
|
||||
named_modules = [name for name, _ in pipe.transformer.named_modules()]
|
||||
has_attn1 = any("attn1" in name for name in named_modules)
|
||||
if has_attn1:
|
||||
pipe.transformer.transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float("inf")
|
||||
else:
|
||||
pipe.transformer.transformer_blocks[0].attn.to_q.lora_A["adapter-1"].weight += float("inf")
|
||||
|
||||
# with `safe_fusing=True` we should see an Error
|
||||
with self.assertRaises(ValueError):
|
||||
|
||||
Reference in New Issue
Block a user