mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[docs] minor cleanups in the lora docs. (#11770)
* minor cleanups in the lora docs. * Apply suggestions from code review Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * format docs * fix copies --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
This commit is contained in:
@@ -37,6 +37,10 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
|
||||
|
||||
</Tip>
|
||||
|
||||
## LoraBaseMixin
|
||||
|
||||
[[autodoc]] loaders.lora_base.LoraBaseMixin
|
||||
|
||||
## StableDiffusionLoraLoaderMixin
|
||||
|
||||
[[autodoc]] loaders.lora_pipeline.StableDiffusionLoraLoaderMixin
|
||||
@@ -96,10 +100,6 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
|
||||
|
||||
[[autodoc]] loaders.lora_pipeline.HiDreamImageLoraLoaderMixin
|
||||
|
||||
## LoraBaseMixin
|
||||
|
||||
[[autodoc]] loaders.lora_base.LoraBaseMixin
|
||||
|
||||
## WanLoraLoaderMixin
|
||||
|
||||
[[autodoc]] loaders.lora_pipeline.WanLoraLoaderMixin
|
||||
@@ -424,6 +424,17 @@ def _load_lora_into_text_encoder(
|
||||
|
||||
|
||||
def _func_optionally_disable_offloading(_pipeline):
|
||||
"""
|
||||
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
|
||||
|
||||
Args:
|
||||
_pipeline (`DiffusionPipeline`):
|
||||
The pipeline to disable offloading for.
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
|
||||
"""
|
||||
is_model_cpu_offload = False
|
||||
is_sequential_cpu_offload = False
|
||||
|
||||
@@ -453,6 +464,24 @@ class LoraBaseMixin:
|
||||
_lora_loadable_modules = []
|
||||
_merged_adapters = set()
|
||||
|
||||
@property
|
||||
def lora_scale(self) -> float:
|
||||
"""
|
||||
Returns the lora scale which can be set at run time by the pipeline. # if `_lora_scale` has not been set,
|
||||
return 1.
|
||||
"""
|
||||
return self._lora_scale if hasattr(self, "_lora_scale") else 1.0
|
||||
|
||||
@property
|
||||
def num_fused_loras(self):
|
||||
"""Returns the number of LoRAs that have been fused."""
|
||||
return len(self._merged_adapters)
|
||||
|
||||
@property
|
||||
def fused_loras(self):
|
||||
"""Returns names of the LoRAs that have been fused."""
|
||||
return self._merged_adapters
|
||||
|
||||
def load_lora_weights(self, **kwargs):
|
||||
raise NotImplementedError("`load_lora_weights()` is not implemented.")
|
||||
|
||||
@@ -464,33 +493,6 @@ class LoraBaseMixin:
|
||||
def lora_state_dict(cls, **kwargs):
|
||||
raise NotImplementedError("`lora_state_dict()` is not implemented.")
|
||||
|
||||
@classmethod
|
||||
def _optionally_disable_offloading(cls, _pipeline):
|
||||
"""
|
||||
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
|
||||
|
||||
Args:
|
||||
_pipeline (`DiffusionPipeline`):
|
||||
The pipeline to disable offloading for.
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
|
||||
"""
|
||||
return _func_optionally_disable_offloading(_pipeline=_pipeline)
|
||||
|
||||
@classmethod
|
||||
def _fetch_state_dict(cls, *args, **kwargs):
|
||||
deprecation_message = f"Using the `_fetch_state_dict()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _fetch_state_dict`."
|
||||
deprecate("_fetch_state_dict", "0.35.0", deprecation_message)
|
||||
return _fetch_state_dict(*args, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def _best_guess_weight_name(cls, *args, **kwargs):
|
||||
deprecation_message = f"Using the `_best_guess_weight_name()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _best_guess_weight_name`."
|
||||
deprecate("_best_guess_weight_name", "0.35.0", deprecation_message)
|
||||
return _best_guess_weight_name(*args, **kwargs)
|
||||
|
||||
def unload_lora_weights(self):
|
||||
"""
|
||||
Unloads the LoRA parameters.
|
||||
@@ -661,19 +663,37 @@ class LoraBaseMixin:
|
||||
self._merged_adapters = self._merged_adapters - {adapter}
|
||||
module.unmerge()
|
||||
|
||||
@property
|
||||
def num_fused_loras(self):
|
||||
return len(self._merged_adapters)
|
||||
|
||||
@property
|
||||
def fused_loras(self):
|
||||
return self._merged_adapters
|
||||
|
||||
def set_adapters(
|
||||
self,
|
||||
adapter_names: Union[List[str], str],
|
||||
adapter_weights: Optional[Union[float, Dict, List[float], List[Dict]]] = None,
|
||||
):
|
||||
"""
|
||||
Set the currently active adapters for use in the pipeline.
|
||||
|
||||
Args:
|
||||
adapter_names (`List[str]` or `str`):
|
||||
The names of the adapters to use.
|
||||
adapter_weights (`Union[List[float], float]`, *optional*):
|
||||
The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the
|
||||
adapters.
|
||||
|
||||
Example:
|
||||
|
||||
```py
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
import torch
|
||||
|
||||
pipeline = AutoPipelineForText2Image.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
pipeline.load_lora_weights(
|
||||
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
||||
)
|
||||
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
|
||||
pipeline.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
|
||||
```
|
||||
"""
|
||||
if isinstance(adapter_weights, dict):
|
||||
components_passed = set(adapter_weights.keys())
|
||||
lora_components = set(self._lora_loadable_modules)
|
||||
@@ -743,6 +763,24 @@ class LoraBaseMixin:
|
||||
set_adapters_for_text_encoder(adapter_names, model, _component_adapter_weights[component])
|
||||
|
||||
def disable_lora(self):
|
||||
"""
|
||||
Disables the active LoRA layers of the pipeline.
|
||||
|
||||
Example:
|
||||
|
||||
```py
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
import torch
|
||||
|
||||
pipeline = AutoPipelineForText2Image.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
pipeline.load_lora_weights(
|
||||
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
||||
)
|
||||
pipeline.disable_lora()
|
||||
```
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
raise ValueError("PEFT backend is required for this method.")
|
||||
|
||||
@@ -755,6 +793,24 @@ class LoraBaseMixin:
|
||||
disable_lora_for_text_encoder(model)
|
||||
|
||||
def enable_lora(self):
|
||||
"""
|
||||
Enables the active LoRA layers of the pipeline.
|
||||
|
||||
Example:
|
||||
|
||||
```py
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
import torch
|
||||
|
||||
pipeline = AutoPipelineForText2Image.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
pipeline.load_lora_weights(
|
||||
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
||||
)
|
||||
pipeline.enable_lora()
|
||||
```
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
raise ValueError("PEFT backend is required for this method.")
|
||||
|
||||
@@ -768,10 +824,26 @@ class LoraBaseMixin:
|
||||
|
||||
def delete_adapters(self, adapter_names: Union[List[str], str]):
|
||||
"""
|
||||
Delete an adapter's LoRA layers from the pipeline.
|
||||
|
||||
Args:
|
||||
Deletes the LoRA layers of `adapter_name` for the unet and text-encoder(s).
|
||||
adapter_names (`Union[List[str], str]`):
|
||||
The names of the adapter to delete. Can be a single string or a list of strings
|
||||
The names of the adapters to delete.
|
||||
|
||||
Example:
|
||||
|
||||
```py
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
import torch
|
||||
|
||||
pipeline = AutoPipelineForText2Image.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
pipeline.load_lora_weights(
|
||||
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_names="cinematic"
|
||||
)
|
||||
pipeline.delete_adapters("cinematic")
|
||||
```
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
raise ValueError("PEFT backend is required for this method.")
|
||||
@@ -872,6 +944,24 @@ class LoraBaseMixin:
|
||||
adapter_name
|
||||
].to(device)
|
||||
|
||||
def enable_lora_hotswap(self, **kwargs) -> None:
|
||||
"""
|
||||
Hotswap adapters without triggering recompilation of a model or if the ranks of the loaded adapters are
|
||||
different.
|
||||
|
||||
Args:
|
||||
target_rank (`int`):
|
||||
The highest rank among all the adapters that will be loaded.
|
||||
check_compiled (`str`, *optional*, defaults to `"error"`):
|
||||
How to handle a model that is already compiled. The check can return the following messages:
|
||||
- "error" (default): raise an error
|
||||
- "warn": issue a warning
|
||||
- "ignore": do nothing
|
||||
"""
|
||||
for key, component in self.components.items():
|
||||
if hasattr(component, "enable_lora_hotswap") and (key in self._lora_loadable_modules):
|
||||
component.enable_lora_hotswap(**kwargs)
|
||||
|
||||
@staticmethod
|
||||
def pack_weights(layers, prefix):
|
||||
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
|
||||
@@ -887,6 +977,7 @@ class LoraBaseMixin:
|
||||
safe_serialization: bool,
|
||||
lora_adapter_metadata: Optional[dict] = None,
|
||||
):
|
||||
"""Writes the state dict of the LoRA layers (optionally with metadata) to disk."""
|
||||
if os.path.isfile(save_directory):
|
||||
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
||||
return
|
||||
@@ -927,28 +1018,18 @@ class LoraBaseMixin:
|
||||
save_function(state_dict, save_path)
|
||||
logger.info(f"Model weights saved in {save_path}")
|
||||
|
||||
@property
|
||||
def lora_scale(self) -> float:
|
||||
# property function that returns the lora scale which can be set at run time by the pipeline.
|
||||
# if _lora_scale has not been set, return 1
|
||||
return self._lora_scale if hasattr(self, "_lora_scale") else 1.0
|
||||
@classmethod
|
||||
def _optionally_disable_offloading(cls, _pipeline):
|
||||
return _func_optionally_disable_offloading(_pipeline=_pipeline)
|
||||
|
||||
def enable_lora_hotswap(self, **kwargs) -> None:
|
||||
"""Enables the possibility to hotswap LoRA adapters.
|
||||
@classmethod
|
||||
def _fetch_state_dict(cls, *args, **kwargs):
|
||||
deprecation_message = f"Using the `_fetch_state_dict()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _fetch_state_dict`."
|
||||
deprecate("_fetch_state_dict", "0.35.0", deprecation_message)
|
||||
return _fetch_state_dict(*args, **kwargs)
|
||||
|
||||
Calling this method is only required when hotswapping adapters and if the model is compiled or if the ranks of
|
||||
the loaded adapters differ.
|
||||
|
||||
Args:
|
||||
target_rank (`int`):
|
||||
The highest rank among all the adapters that will be loaded.
|
||||
check_compiled (`str`, *optional*, defaults to `"error"`):
|
||||
How to handle the case when the model is already compiled, which should generally be avoided. The
|
||||
options are:
|
||||
- "error" (default): raise an error
|
||||
- "warn": issue a warning
|
||||
- "ignore": do nothing
|
||||
"""
|
||||
for key, component in self.components.items():
|
||||
if hasattr(component, "enable_lora_hotswap") and (key in self._lora_loadable_modules):
|
||||
component.enable_lora_hotswap(**kwargs)
|
||||
@classmethod
|
||||
def _best_guess_weight_name(cls, *args, **kwargs):
|
||||
deprecation_message = f"Using the `_best_guess_weight_name()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _best_guess_weight_name`."
|
||||
deprecate("_best_guess_weight_name", "0.35.0", deprecation_message)
|
||||
return _best_guess_weight_name(*args, **kwargs)
|
||||
|
||||
@@ -85,17 +85,6 @@ class PeftAdapterMixin:
|
||||
@classmethod
|
||||
# Copied from diffusers.loaders.lora_base.LoraBaseMixin._optionally_disable_offloading
|
||||
def _optionally_disable_offloading(cls, _pipeline):
|
||||
"""
|
||||
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
|
||||
|
||||
Args:
|
||||
_pipeline (`DiffusionPipeline`):
|
||||
The pipeline to disable offloading for.
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
|
||||
"""
|
||||
return _func_optionally_disable_offloading(_pipeline=_pipeline)
|
||||
|
||||
def load_lora_adapter(
|
||||
@@ -444,7 +433,7 @@ class PeftAdapterMixin:
|
||||
weights: Optional[Union[float, Dict, List[float], List[Dict], List[None]]] = None,
|
||||
):
|
||||
"""
|
||||
Set the currently active adapters for use in the UNet.
|
||||
Set the currently active adapters for use in the diffusion network (e.g. unet, transformer, etc.).
|
||||
|
||||
Args:
|
||||
adapter_names (`List[str]` or `str`):
|
||||
@@ -466,7 +455,7 @@ class PeftAdapterMixin:
|
||||
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
||||
)
|
||||
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
|
||||
pipeline.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
|
||||
pipeline.unet.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
|
||||
```
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
@@ -714,7 +703,7 @@ class PeftAdapterMixin:
|
||||
pipeline.load_lora_weights(
|
||||
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
||||
)
|
||||
pipeline.disable_lora()
|
||||
pipeline.unet.disable_lora()
|
||||
```
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
@@ -737,7 +726,7 @@ class PeftAdapterMixin:
|
||||
pipeline.load_lora_weights(
|
||||
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
||||
)
|
||||
pipeline.enable_lora()
|
||||
pipeline.unet.enable_lora()
|
||||
```
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
@@ -764,7 +753,7 @@ class PeftAdapterMixin:
|
||||
pipeline.load_lora_weights(
|
||||
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_names="cinematic"
|
||||
)
|
||||
pipeline.delete_adapters("cinematic")
|
||||
pipeline.unet.delete_adapters("cinematic")
|
||||
```
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
|
||||
@@ -394,17 +394,6 @@ class UNet2DConditionLoadersMixin:
|
||||
@classmethod
|
||||
# Copied from diffusers.loaders.lora_base.LoraBaseMixin._optionally_disable_offloading
|
||||
def _optionally_disable_offloading(cls, _pipeline):
|
||||
"""
|
||||
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
|
||||
|
||||
Args:
|
||||
_pipeline (`DiffusionPipeline`):
|
||||
The pipeline to disable offloading for.
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
|
||||
"""
|
||||
return _func_optionally_disable_offloading(_pipeline=_pipeline)
|
||||
|
||||
def save_attn_procs(
|
||||
|
||||
Reference in New Issue
Block a user