1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
This commit is contained in:
sayakpaul
2025-09-22 16:46:49 +05:30
parent 04e9323055
commit 92199ff3ac
2 changed files with 33 additions and 20 deletions

View File

@@ -66,10 +66,10 @@ class AdaLayerNorm(nn.Module):
else:
self.emb = None
if not DIFFUSERS_ENABLE_HUB_KERNELS:
self.silu = nn.SiLU()
else:
if DIFFUSERS_ENABLE_HUB_KERNELS:
self.silu = silu_kernel()
else:
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, output_dim)
self.norm = nn.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine)
@@ -156,10 +156,10 @@ class AdaLayerNormZero(nn.Module):
else:
self.emb = None
if not DIFFUSERS_ENABLE_HUB_KERNELS:
self.silu = nn.SiLU()
else:
if DIFFUSERS_ENABLE_HUB_KERNELS:
self.silu = silu_kernel()
else:
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
if norm_type == "layer_norm":
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
@@ -198,10 +198,10 @@ class AdaLayerNormZeroSingle(nn.Module):
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
super().__init__()
if not DIFFUSERS_ENABLE_HUB_KERNELS:
self.silu = nn.SiLU()
else:
if DIFFUSERS_ENABLE_HUB_KERNELS:
self.silu = silu_kernel()
else:
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
if norm_type == "layer_norm":
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
@@ -353,10 +353,10 @@ class AdaLayerNormContinuous(nn.Module):
norm_type="layer_norm",
):
super().__init__()
if not DIFFUSERS_ENABLE_HUB_KERNELS:
self.silu = nn.SiLU()
else:
if DIFFUSERS_ENABLE_HUB_KERNELS:
self.silu = silu_kernel()
else:
self.silu = nn.SiLU()
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
if norm_type == "layer_norm":
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)

View File

@@ -307,8 +307,14 @@ class FluxAttention(torch.nn.Module, AttentionModuleMixin):
self.added_kv_proj_dim = added_kv_proj_dim
self.added_proj_bias = added_proj_bias
self.norm_q = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
self.norm_k = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
if DIFFUSERS_ENABLE_HUB_KERNELS:
from ..normalization import RMSNorm
self.norm_q = RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
self.norm_k = RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
else:
self.norm_q = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
self.norm_k = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
self.to_q = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
self.to_k = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
self.to_v = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
@@ -319,8 +325,14 @@ class FluxAttention(torch.nn.Module, AttentionModuleMixin):
self.to_out.append(torch.nn.Dropout(dropout))
if added_kv_proj_dim is not None:
self.norm_added_q = torch.nn.RMSNorm(dim_head, eps=eps)
self.norm_added_k = torch.nn.RMSNorm(dim_head, eps=eps)
if DIFFUSERS_ENABLE_HUB_KERNELS:
from ..normalization import RMSNorm
self.norm_added_q = RMSNorm(dim_head, eps=eps)
self.norm_added_k = RMSNorm(dim_head, eps=eps)
else:
self.norm_added_q = torch.nn.RMSNorm(dim_head, eps=eps)
self.norm_added_k = torch.nn.RMSNorm(dim_head, eps=eps)
self.add_q_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
self.add_k_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
self.add_v_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
@@ -357,10 +369,11 @@ class FluxSingleTransformerBlock(nn.Module):
self.norm = AdaLayerNormZeroSingle(dim)
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
if not DIFFUSERS_ENABLE_HUB_KERNELS:
self.act_mlp = nn.GELU(approximate="tanh")
else:
self.act_mlp = gelu_tanh_kernel()
self.act_mlp = nn.GELU(approximate="tanh")
# if not DIFFUSERS_ENABLE_HUB_KERNELS:
# self.act_mlp = nn.GELU(approximate="tanh")
# else:
# self.act_mlp = gelu_tanh_kernel()
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)