mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
FreeInit (#6315)
* freeinit * update freeinit implementation based on review Co-Authored-By: Dhruv Nair <dhruv.nair@gmail.com> * fix * another fix * refactor * fix timesteps missing bug * apply suggestions from review Co-Authored-By: Dhruv Nair <dhruv.nair@gmail.com> * add test for freeinit * apply suggestions from review Co-Authored-By: Dhruv Nair <dhruv.nair@gmail.com> * refactor * fix test * fix tensor not on same device * update * remove return_intermediate_results * fix broken freeinit test * update animatediff docs --------- Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
This commit is contained in:
@@ -13,11 +13,13 @@
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.fft as fft
|
||||
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
||||
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
@@ -36,6 +38,7 @@ from ...schedulers import (
|
||||
from ...utils import (
|
||||
USE_PEFT_BACKEND,
|
||||
BaseOutput,
|
||||
deprecate,
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
scale_lora_layers,
|
||||
@@ -79,6 +82,71 @@ def tensor2vid(video: torch.Tensor, processor, output_type="np"):
|
||||
return outputs
|
||||
|
||||
|
||||
def _get_freeinit_freq_filter(
|
||||
shape: Tuple[int, ...],
|
||||
device: Union[str, torch.dtype],
|
||||
filter_type: str,
|
||||
order: float,
|
||||
spatial_stop_frequency: float,
|
||||
temporal_stop_frequency: float,
|
||||
) -> torch.Tensor:
|
||||
r"""Returns the FreeInit filter based on filter type and other input conditions."""
|
||||
|
||||
T, H, W = shape[-3], shape[-2], shape[-1]
|
||||
mask = torch.zeros(shape)
|
||||
|
||||
if spatial_stop_frequency == 0 or temporal_stop_frequency == 0:
|
||||
return mask
|
||||
|
||||
if filter_type == "butterworth":
|
||||
|
||||
def retrieve_mask(x):
|
||||
return 1 / (1 + (x / spatial_stop_frequency**2) ** order)
|
||||
elif filter_type == "gaussian":
|
||||
|
||||
def retrieve_mask(x):
|
||||
return math.exp(-1 / (2 * spatial_stop_frequency**2) * x)
|
||||
elif filter_type == "ideal":
|
||||
|
||||
def retrieve_mask(x):
|
||||
return 1 if x <= spatial_stop_frequency * 2 else 0
|
||||
else:
|
||||
raise NotImplementedError("`filter_type` must be one of gaussian, butterworth or ideal")
|
||||
|
||||
for t in range(T):
|
||||
for h in range(H):
|
||||
for w in range(W):
|
||||
d_square = (
|
||||
((spatial_stop_frequency / temporal_stop_frequency) * (2 * t / T - 1)) ** 2
|
||||
+ (2 * h / H - 1) ** 2
|
||||
+ (2 * w / W - 1) ** 2
|
||||
)
|
||||
mask[..., t, h, w] = retrieve_mask(d_square)
|
||||
|
||||
return mask.to(device)
|
||||
|
||||
|
||||
def _freq_mix_3d(x: torch.Tensor, noise: torch.Tensor, LPF: torch.Tensor) -> torch.Tensor:
|
||||
r"""Noise reinitialization."""
|
||||
# FFT
|
||||
x_freq = fft.fftn(x, dim=(-3, -2, -1))
|
||||
x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1))
|
||||
noise_freq = fft.fftn(noise, dim=(-3, -2, -1))
|
||||
noise_freq = fft.fftshift(noise_freq, dim=(-3, -2, -1))
|
||||
|
||||
# frequency mix
|
||||
HPF = 1 - LPF
|
||||
x_freq_low = x_freq * LPF
|
||||
noise_freq_high = noise_freq * HPF
|
||||
x_freq_mixed = x_freq_low + noise_freq_high # mix in freq domain
|
||||
|
||||
# IFFT
|
||||
x_freq_mixed = fft.ifftshift(x_freq_mixed, dim=(-3, -2, -1))
|
||||
x_mixed = fft.ifftn(x_freq_mixed, dim=(-3, -2, -1)).real
|
||||
|
||||
return x_mixed
|
||||
|
||||
|
||||
@dataclass
|
||||
class AnimateDiffPipelineOutput(BaseOutput):
|
||||
frames: Union[torch.Tensor, np.ndarray]
|
||||
@@ -115,6 +183,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
||||
_optional_components = ["feature_extractor", "image_encoder"]
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -442,6 +511,58 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
||||
"""Disables the FreeU mechanism if enabled."""
|
||||
self.unet.disable_freeu()
|
||||
|
||||
@property
|
||||
def free_init_enabled(self):
|
||||
return hasattr(self, "_free_init_num_iters") and self._free_init_num_iters is not None
|
||||
|
||||
def enable_free_init(
|
||||
self,
|
||||
num_iters: int = 3,
|
||||
use_fast_sampling: bool = False,
|
||||
method: str = "butterworth",
|
||||
order: int = 4,
|
||||
spatial_stop_frequency: float = 0.25,
|
||||
temporal_stop_frequency: float = 0.25,
|
||||
generator: torch.Generator = None,
|
||||
):
|
||||
"""Enables the FreeInit mechanism as in https://arxiv.org/abs/2312.07537.
|
||||
|
||||
This implementation has been adapted from the [official repository](https://github.com/TianxingWu/FreeInit).
|
||||
|
||||
Args:
|
||||
num_iters (`int`, *optional*, defaults to `3`):
|
||||
Number of FreeInit noise re-initialization iterations.
|
||||
use_fast_sampling (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to speedup sampling procedure at the cost of probably lower quality results. Enables
|
||||
the "Coarse-to-Fine Sampling" strategy, as mentioned in the paper, if set to `True`.
|
||||
method (`str`, *optional*, defaults to `butterworth`):
|
||||
Must be one of `butterworth`, `ideal` or `gaussian` to use as the filtering method for the
|
||||
FreeInit low pass filter.
|
||||
order (`int`, *optional*, defaults to `4`):
|
||||
Order of the filter used in `butterworth` method. Larger values lead to `ideal` method behaviour
|
||||
whereas lower values lead to `gaussian` method behaviour.
|
||||
spatial_stop_frequency (`float`, *optional*, defaults to `0.25`):
|
||||
Normalized stop frequency for spatial dimensions. Must be between 0 to 1. Referred to as `d_s` in
|
||||
the original implementation.
|
||||
temporal_stop_frequency (`float`, *optional*, defaults to `0.25`):
|
||||
Normalized stop frequency for temporal dimensions. Must be between 0 to 1. Referred to as `d_t` in
|
||||
the original implementation.
|
||||
generator (`torch.Generator`, *optional*, defaults to `0.25`):
|
||||
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
||||
FreeInit generation deterministic.
|
||||
"""
|
||||
self._free_init_num_iters = num_iters
|
||||
self._free_init_use_fast_sampling = use_fast_sampling
|
||||
self._free_init_method = method
|
||||
self._free_init_order = order
|
||||
self._free_init_spatial_stop_frequency = spatial_stop_frequency
|
||||
self._free_init_temporal_stop_frequency = temporal_stop_frequency
|
||||
self._free_init_generator = generator
|
||||
|
||||
def disable_free_init(self):
|
||||
"""Disables the FreeInit mechanism if enabled."""
|
||||
self._free_init_num_iters = None
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||||
def prepare_extra_step_kwargs(self, generator, eta):
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
@@ -539,6 +660,185 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
return latents
|
||||
|
||||
def _denoise_loop(
|
||||
self,
|
||||
timesteps,
|
||||
num_inference_steps,
|
||||
do_classifier_free_guidance,
|
||||
guidance_scale,
|
||||
num_warmup_steps,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
latents,
|
||||
cross_attention_kwargs,
|
||||
added_cond_kwargs,
|
||||
extra_step_kwargs,
|
||||
callback,
|
||||
callback_steps,
|
||||
callback_on_step_end,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
):
|
||||
"""Denoising loop for AnimateDiff."""
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
latent_model_input,
|
||||
t,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
).sample
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
callback(i, t, latents)
|
||||
|
||||
return latents
|
||||
|
||||
def _free_init_loop(
|
||||
self,
|
||||
height,
|
||||
width,
|
||||
num_frames,
|
||||
num_channels_latents,
|
||||
batch_size,
|
||||
num_videos_per_prompt,
|
||||
denoise_args,
|
||||
device,
|
||||
):
|
||||
"""Denoising loop for AnimateDiff using FreeInit noise reinitialization technique."""
|
||||
|
||||
latents = denoise_args.get("latents")
|
||||
prompt_embeds = denoise_args.get("prompt_embeds")
|
||||
timesteps = denoise_args.get("timesteps")
|
||||
num_inference_steps = denoise_args.get("num_inference_steps")
|
||||
|
||||
latent_shape = (
|
||||
batch_size * num_videos_per_prompt,
|
||||
num_channels_latents,
|
||||
num_frames,
|
||||
height // self.vae_scale_factor,
|
||||
width // self.vae_scale_factor,
|
||||
)
|
||||
free_init_filter_shape = (
|
||||
1,
|
||||
num_channels_latents,
|
||||
num_frames,
|
||||
height // self.vae_scale_factor,
|
||||
width // self.vae_scale_factor,
|
||||
)
|
||||
free_init_freq_filter = _get_freeinit_freq_filter(
|
||||
shape=free_init_filter_shape,
|
||||
device=device,
|
||||
filter_type=self._free_init_method,
|
||||
order=self._free_init_order,
|
||||
spatial_stop_frequency=self._free_init_spatial_stop_frequency,
|
||||
temporal_stop_frequency=self._free_init_temporal_stop_frequency,
|
||||
)
|
||||
|
||||
with self.progress_bar(total=self._free_init_num_iters) as free_init_progress_bar:
|
||||
for i in range(self._free_init_num_iters):
|
||||
# For the first FreeInit iteration, the original latent is used without modification.
|
||||
# Subsequent iterations apply the noise reinitialization technique.
|
||||
if i == 0:
|
||||
initial_noise = latents.detach().clone()
|
||||
else:
|
||||
current_diffuse_timestep = (
|
||||
self.scheduler.config.num_train_timesteps - 1
|
||||
) # diffuse to t=999 noise level
|
||||
diffuse_timesteps = torch.full((batch_size,), current_diffuse_timestep).long()
|
||||
z_T = self.scheduler.add_noise(
|
||||
original_samples=latents, noise=initial_noise, timesteps=diffuse_timesteps.to(device)
|
||||
).to(dtype=torch.float32)
|
||||
z_rand = randn_tensor(
|
||||
shape=latent_shape,
|
||||
generator=self._free_init_generator,
|
||||
device=device,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
latents = _freq_mix_3d(z_T, z_rand, LPF=free_init_freq_filter)
|
||||
latents = latents.to(prompt_embeds.dtype)
|
||||
|
||||
# Coarse-to-Fine Sampling for faster inference (can lead to lower quality)
|
||||
if self._free_init_use_fast_sampling:
|
||||
current_num_inference_steps = int(num_inference_steps / self._free_init_num_iters * (i + 1))
|
||||
self.scheduler.set_timesteps(current_num_inference_steps, device=device)
|
||||
timesteps = self.scheduler.timesteps
|
||||
denoise_args.update({"timesteps": timesteps, "num_inference_steps": current_num_inference_steps})
|
||||
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
denoise_args.update({"latents": latents, "num_warmup_steps": num_warmup_steps})
|
||||
latents = self._denoise_loop(**denoise_args)
|
||||
|
||||
free_init_progress_bar.update()
|
||||
|
||||
return latents
|
||||
|
||||
def _retrieve_video_frames(self, latents, output_type, return_dict):
|
||||
"""Helper function to handle latents to output conversion."""
|
||||
if output_type == "latent":
|
||||
return AnimateDiffPipelineOutput(frames=latents)
|
||||
|
||||
video_tensor = self.decode_latents(latents)
|
||||
|
||||
if output_type == "pt":
|
||||
video = video_tensor
|
||||
else:
|
||||
video = tensor2vid(video_tensor, self.image_processor, output_type=output_type)
|
||||
|
||||
if not return_dict:
|
||||
return (video,)
|
||||
|
||||
return AnimateDiffPipelineOutput(frames=video)
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def clip_skip(self):
|
||||
return self._clip_skip
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
@property
|
||||
def do_classifier_free_guidance(self):
|
||||
return self._guidance_scale > 1
|
||||
|
||||
@property
|
||||
def cross_attention_kwargs(self):
|
||||
return self._cross_attention_kwargs
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
@@ -559,10 +859,11 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
||||
ip_adapter_image: Optional[PipelineImageInput] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
callback_steps: Optional[int] = 1,
|
||||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
clip_skip: Optional[int] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
The call function to the pipeline for generation.
|
||||
@@ -603,25 +904,30 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
||||
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
||||
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
||||
ip_adapter_image: (`PipelineImageInput`, *optional*):
|
||||
Optional image input to work with IP Adapters.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generated video. Choose between `torch.FloatTensor`, `PIL.Image` or
|
||||
`np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
|
||||
of a plain tuple.
|
||||
callback (`Callable`, *optional*):
|
||||
A function that calls every `callback_steps` steps during inference. The function is called with the
|
||||
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
||||
callback_steps (`int`, *optional*, defaults to 1):
|
||||
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
||||
every step.
|
||||
cross_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
||||
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
clip_skip (`int`, *optional*):
|
||||
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
||||
the output of the pre-final layer will be used for computing the prompt embeddings.
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeine class.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
@@ -629,6 +935,23 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
||||
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is
|
||||
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
|
||||
"""
|
||||
|
||||
callback = kwargs.pop("callback", None)
|
||||
callback_steps = kwargs.pop("callback_steps", None)
|
||||
|
||||
if callback is not None:
|
||||
deprecate(
|
||||
"callback",
|
||||
"1.0.0",
|
||||
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
||||
)
|
||||
if callback_steps is not None:
|
||||
deprecate(
|
||||
"callback_steps",
|
||||
"1.0.0",
|
||||
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
||||
)
|
||||
|
||||
# 0. Default height and width to unet
|
||||
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
||||
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
||||
@@ -637,9 +960,20 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
callback_steps,
|
||||
negative_prompt,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._clip_skip = clip_skip
|
||||
self._cross_attention_kwargs = cross_attention_kwargs
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
@@ -649,30 +983,26 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
# 3. Encode input prompt
|
||||
text_encoder_lora_scale = (
|
||||
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
||||
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
||||
)
|
||||
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
||||
prompt,
|
||||
device,
|
||||
num_videos_per_prompt,
|
||||
do_classifier_free_guidance,
|
||||
self.do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
lora_scale=text_encoder_lora_scale,
|
||||
clip_skip=clip_skip,
|
||||
clip_skip=self.clip_skip,
|
||||
)
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
if do_classifier_free_guidance:
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
|
||||
if ip_adapter_image is not None:
|
||||
@@ -680,12 +1010,13 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
||||
image_embeds, negative_image_embeds = self.encode_image(
|
||||
ip_adapter_image, device, num_videos_per_prompt, output_hidden_state
|
||||
)
|
||||
if do_classifier_free_guidance:
|
||||
if self.do_classifier_free_guidance:
|
||||
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
||||
|
||||
# 4. Prepare timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
timesteps = self.scheduler.timesteps
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
# 5. Prepare latent variables
|
||||
num_channels_latents = self.unet.config.in_channels
|
||||
@@ -703,55 +1034,47 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
||||
|
||||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
# 7 Add image embeds for IP-Adapter
|
||||
|
||||
# 7. Add image embeds for IP-Adapter
|
||||
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
|
||||
|
||||
# Denoising loop
|
||||
# 8. Denoising loop
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
denoise_args = {
|
||||
"timesteps": timesteps,
|
||||
"num_inference_steps": num_inference_steps,
|
||||
"do_classifier_free_guidance": self.do_classifier_free_guidance,
|
||||
"guidance_scale": guidance_scale,
|
||||
"num_warmup_steps": num_warmup_steps,
|
||||
"prompt_embeds": prompt_embeds,
|
||||
"negative_prompt_embeds": negative_prompt_embeds,
|
||||
"latents": latents,
|
||||
"cross_attention_kwargs": self.cross_attention_kwargs,
|
||||
"added_cond_kwargs": added_cond_kwargs,
|
||||
"extra_step_kwargs": extra_step_kwargs,
|
||||
"callback": callback,
|
||||
"callback_steps": callback_steps,
|
||||
"callback_on_step_end": callback_on_step_end,
|
||||
"callback_on_step_end_tensor_inputs": callback_on_step_end_tensor_inputs,
|
||||
}
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
latent_model_input,
|
||||
t,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
).sample
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
callback(i, t, latents)
|
||||
|
||||
if output_type == "latent":
|
||||
return AnimateDiffPipelineOutput(frames=latents)
|
||||
|
||||
# Post-processing
|
||||
video_tensor = self.decode_latents(latents)
|
||||
|
||||
if output_type == "pt":
|
||||
video = video_tensor
|
||||
if self.free_init_enabled:
|
||||
latents = self._free_init_loop(
|
||||
height=height,
|
||||
width=width,
|
||||
num_frames=num_frames,
|
||||
num_channels_latents=num_channels_latents,
|
||||
batch_size=batch_size,
|
||||
num_videos_per_prompt=num_videos_per_prompt,
|
||||
denoise_args=denoise_args,
|
||||
device=device,
|
||||
)
|
||||
else:
|
||||
video = tensor2vid(video_tensor, self.image_processor, output_type=output_type)
|
||||
latents = self._denoise_loop(**denoise_args)
|
||||
|
||||
# Offload all models
|
||||
video = self._retrieve_video_frames(latents, output_type, return_dict)
|
||||
|
||||
# 9. Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (video,)
|
||||
|
||||
return AnimateDiffPipelineOutput(frames=video)
|
||||
return video
|
||||
|
||||
Reference in New Issue
Block a user