mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Adds docs for gradio.Interface.from_pipeline() (#7346)
* gradio docs * Update docs/source/en/api/pipelines/stable_diffusion/overview.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * changes * changes * changes * Update docs/source/en/api/pipelines/stable_diffusion/overview.md --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
This commit is contained in:
@@ -172,3 +172,41 @@ inpaint = StableDiffusionInpaintPipeline(**text2img.components)
|
||||
|
||||
# now you can use text2img(...), img2img(...), inpaint(...) just like the call methods of each respective pipeline
|
||||
```
|
||||
|
||||
### Create web demos using `gradio`
|
||||
|
||||
The Stable Diffusion pipelines are automatically supported in [Gradio](https://github.com/gradio-app/gradio/), a library that makes creating beautiful and user-friendly machine learning apps on the web a breeze. First, make sure you have Gradio installed:
|
||||
|
||||
```
|
||||
pip install -U gradio
|
||||
```
|
||||
|
||||
Then, create a web demo around any Stable Diffusion-based pipeline. For example, you can create an image generation pipeline in a single line of code with Gradio's [`Interface.from_pipeline`](https://www.gradio.app/docs/interface#interface-from-pipeline) function:
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionPipeline
|
||||
import gradio as gr
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
||||
|
||||
gr.Interface.from_pipeline(pipe).launch()
|
||||
```
|
||||
|
||||
which opens an intuitive drag-and-drop interface in your browser:
|
||||
|
||||

|
||||
|
||||
Similarly, you could create a demo for an image-to-image pipeline with:
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionImg2ImgPipeline
|
||||
import gradio as gr
|
||||
|
||||
|
||||
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
||||
|
||||
gr.Interface.from_pipeline(pipe).launch()
|
||||
```
|
||||
|
||||
By default, the web demo runs on a local server. If you'd like to share it with others, you can generate a temporary public
|
||||
link by setting `share=True` in `launch()`. Or, you can host your demo on [Hugging Face Spaces](https://huggingface.co/spaces)https://huggingface.co/spaces for a permanent link.
|
||||
Reference in New Issue
Block a user