mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[docs] Add a note of _keep_in_fp32_modules (#11851)
* update * Update docs/source/en/using-diffusers/schedulers.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update schedulers.md --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
This commit is contained in:
@@ -242,3 +242,15 @@ unet = UNet2DConditionModel.from_pretrained(
|
||||
)
|
||||
unet.save_pretrained("./local-unet", variant="non_ema")
|
||||
```
|
||||
|
||||
Use the `torch_dtype` argument in [`~ModelMixin.from_pretrained`] to specify the dtype to load a model in.
|
||||
|
||||
```py
|
||||
from diffusers import AutoModel
|
||||
|
||||
unet = AutoModel.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", torch_dtype=torch.float16
|
||||
)
|
||||
```
|
||||
|
||||
You can also use the [torch.Tensor.to](https://docs.pytorch.org/docs/stable/generated/torch.Tensor.to.html) method to convert to the specified dtype on the fly. It converts *all* weights unlike the `torch_dtype` argument that respects the `_keep_in_fp32_modules`. This is important for models whose layers must remain in fp32 for numerical stability and best generation quality (see example [here](https://github.com/huggingface/diffusers/blob/f864a9a352fa4a220d860bfdd1782e3e5af96382/src/diffusers/models/transformers/transformer_wan.py#L374)).
|
||||
|
||||
Reference in New Issue
Block a user