mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
@@ -75,7 +75,7 @@ The following is a summary of the recommended checkpoints, all of which produce
|
||||
| [prs-eth/marigold-depth-v1-1](https://huggingface.co/prs-eth/marigold-depth-v1-1) | Depth | Affine-invariant depth prediction assigns each pixel a value between 0 (near plane) and 1 (far plane), with both planes determined by the model during inference. |
|
||||
| [prs-eth/marigold-normals-v0-1](https://huggingface.co/prs-eth/marigold-normals-v0-1) | Normals | The surface normals predictions are unit-length 3D vectors in the screen space camera, with values in the range from -1 to 1. |
|
||||
| [prs-eth/marigold-iid-appearance-v1-1](https://huggingface.co/prs-eth/marigold-iid-appearance-v1-1) | Intrinsics | InteriorVerse decomposition is comprised of Albedo and two BRDF material properties: Roughness and Metallicity. |
|
||||
| [prs-eth/marigold-iid-lighting-v1-1](https://huggingface.co/prs-eth/marigold-iid-lighting-v1-1) | Intrinsics | HyperSim decomposition of an image  \\(I\\)  is comprised of Albedo  \\(A\\), Diffuse shading  \\(S\\), and Non-diffuse residual  \\(R\\):  \\(I = A*S+R\\). |
|
||||
| [prs-eth/marigold-iid-lighting-v1-1](https://huggingface.co/prs-eth/marigold-iid-lighting-v1-1) | Intrinsics | HyperSim decomposition of an image $I$ is comprised of Albedo $A$, Diffuse shading $S$, and Non-diffuse residual $R$: $I = A*S+R$. |
|
||||
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff
|
||||
|
||||
@@ -86,15 +86,14 @@ class MarigoldDepthOutput(BaseOutput):
|
||||
|
||||
Args:
|
||||
prediction (`np.ndarray`, `torch.Tensor`):
|
||||
Predicted depth maps with values in the range [0, 1]. The shape is $numimages \times 1 \times height \times
|
||||
width$ for `torch.Tensor` or $numimages \times height \times width \times 1$ for `np.ndarray`.
|
||||
Predicted depth maps with values in the range [0, 1]. The shape is `numimages × 1 × height × width` for
|
||||
`torch.Tensor` or `numimages × height × width × 1` for `np.ndarray`.
|
||||
uncertainty (`None`, `np.ndarray`, `torch.Tensor`):
|
||||
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is $numimages
|
||||
\times 1 \times height \times width$ for `torch.Tensor` or $numimages \times height \times width \times 1$
|
||||
for `np.ndarray`.
|
||||
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is `numimages × 1 ×
|
||||
height × width` for `torch.Tensor` or `numimages × height × width × 1` for `np.ndarray`.
|
||||
latent (`None`, `torch.Tensor`):
|
||||
Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
|
||||
The shape is $numimages * numensemble \times 4 \times latentheight \times latentwidth$.
|
||||
The shape is `numimages * numensemble × 4 × latentheight × latentwidth`.
|
||||
"""
|
||||
|
||||
prediction: Union[np.ndarray, torch.Tensor]
|
||||
|
||||
@@ -99,17 +99,17 @@ class MarigoldIntrinsicsOutput(BaseOutput):
|
||||
|
||||
Args:
|
||||
prediction (`np.ndarray`, `torch.Tensor`):
|
||||
Predicted image intrinsics with values in the range [0, 1]. The shape is $(numimages * numtargets) \times 3
|
||||
\times height \times width$ for `torch.Tensor` or $(numimages * numtargets) \times height \times width
|
||||
\times 3$ for `np.ndarray`, where `numtargets` corresponds to the number of predicted target modalities of
|
||||
the intrinsic image decomposition.
|
||||
Predicted image intrinsics with values in the range [0, 1]. The shape is `(numimages * numtargets) × 3 ×
|
||||
height × width` for `torch.Tensor` or `(numimages * numtargets) × height × width × 3` for `np.ndarray`,
|
||||
where `numtargets` corresponds to the number of predicted target modalities of the intrinsic image
|
||||
decomposition.
|
||||
uncertainty (`None`, `np.ndarray`, `torch.Tensor`):
|
||||
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is $(numimages *
|
||||
numtargets) \times 3 \times height \times width$ for `torch.Tensor` or $(numimages * numtargets) \times
|
||||
height \times width \times 3$ for `np.ndarray`.
|
||||
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is `(numimages *
|
||||
numtargets) × 3 × height × width` for `torch.Tensor` or `(numimages * numtargets) × height × width × 3` for
|
||||
`np.ndarray`.
|
||||
latent (`None`, `torch.Tensor`):
|
||||
Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
|
||||
The shape is $(numimages * numensemble) \times (numtargets * 4) \times latentheight \times latentwidth$.
|
||||
The shape is `(numimages * numensemble) × (numtargets * 4) × latentheight × latentwidth`.
|
||||
"""
|
||||
|
||||
prediction: Union[np.ndarray, torch.Tensor]
|
||||
|
||||
@@ -81,15 +81,14 @@ class MarigoldNormalsOutput(BaseOutput):
|
||||
|
||||
Args:
|
||||
prediction (`np.ndarray`, `torch.Tensor`):
|
||||
Predicted normals with values in the range [-1, 1]. The shape is $numimages \times 3 \times height \times
|
||||
width$ for `torch.Tensor` or $numimages \times height \times width \times 3$ for `np.ndarray`.
|
||||
Predicted normals with values in the range [-1, 1]. The shape is `numimages × 3 × height × width` for
|
||||
`torch.Tensor` or `numimages × height × width × 3` for `np.ndarray`.
|
||||
uncertainty (`None`, `np.ndarray`, `torch.Tensor`):
|
||||
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is $numimages
|
||||
\times 1 \times height \times width$ for `torch.Tensor` or $numimages \times height \times width \times 1$
|
||||
for `np.ndarray`.
|
||||
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is `numimages × 1 ×
|
||||
height × width` for `torch.Tensor` or `numimages × height × width × 1` for `np.ndarray`.
|
||||
latent (`None`, `torch.Tensor`):
|
||||
Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
|
||||
The shape is $numimages * numensemble \times 4 \times latentheight \times latentwidth$.
|
||||
The shape is `numimages * numensemble × 4 × latentheight × latentwidth`.
|
||||
"""
|
||||
|
||||
prediction: Union[np.ndarray, torch.Tensor]
|
||||
|
||||
Reference in New Issue
Block a user