1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[docs] Fix syntax (#12464)

* fix syntax

* fix

* style

* fix
This commit is contained in:
Steven Liu
2025-10-10 19:43:30 -07:00
committed by GitHub
parent 693d8a3a52
commit 8abc7aeb71
4 changed files with 19 additions and 21 deletions

View File

@@ -75,7 +75,7 @@ The following is a summary of the recommended checkpoints, all of which produce
| [prs-eth/marigold-depth-v1-1](https://huggingface.co/prs-eth/marigold-depth-v1-1) | Depth | Affine-invariant depth prediction assigns each pixel a value between 0 (near plane) and 1 (far plane), with both planes determined by the model during inference. |
| [prs-eth/marigold-normals-v0-1](https://huggingface.co/prs-eth/marigold-normals-v0-1) | Normals | The surface normals predictions are unit-length 3D vectors in the screen space camera, with values in the range from -1 to 1. |
| [prs-eth/marigold-iid-appearance-v1-1](https://huggingface.co/prs-eth/marigold-iid-appearance-v1-1) | Intrinsics | InteriorVerse decomposition is comprised of Albedo and two BRDF material properties: Roughness and Metallicity. |
| [prs-eth/marigold-iid-lighting-v1-1](https://huggingface.co/prs-eth/marigold-iid-lighting-v1-1) | Intrinsics | HyperSim decomposition of an image &nbsp\\(I\\)&nbsp is comprised of Albedo &nbsp\\(A\\), Diffuse shading &nbsp\\(S\\), and Non-diffuse residual &nbsp\\(R\\): &nbsp\\(I = A*S+R\\). |
| [prs-eth/marigold-iid-lighting-v1-1](https://huggingface.co/prs-eth/marigold-iid-lighting-v1-1) | Intrinsics | HyperSim decomposition of an image $I$ is comprised of Albedo $A$, Diffuse shading $S$, and Non-diffuse residual $R$: $I = A*S+R$. |
> [!TIP]
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff

View File

@@ -86,15 +86,14 @@ class MarigoldDepthOutput(BaseOutput):
Args:
prediction (`np.ndarray`, `torch.Tensor`):
Predicted depth maps with values in the range [0, 1]. The shape is $numimages \times 1 \times height \times
width$ for `torch.Tensor` or $numimages \times height \times width \times 1$ for `np.ndarray`.
Predicted depth maps with values in the range [0, 1]. The shape is `numimages × 1 × height × width` for
`torch.Tensor` or `numimages × height × width × 1` for `np.ndarray`.
uncertainty (`None`, `np.ndarray`, `torch.Tensor`):
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is $numimages
\times 1 \times height \times width$ for `torch.Tensor` or $numimages \times height \times width \times 1$
for `np.ndarray`.
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is `numimages × 1 ×
height × width` for `torch.Tensor` or `numimages × height × width × 1` for `np.ndarray`.
latent (`None`, `torch.Tensor`):
Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
The shape is $numimages * numensemble \times 4 \times latentheight \times latentwidth$.
The shape is `numimages * numensemble × 4 × latentheight × latentwidth`.
"""
prediction: Union[np.ndarray, torch.Tensor]

View File

@@ -99,17 +99,17 @@ class MarigoldIntrinsicsOutput(BaseOutput):
Args:
prediction (`np.ndarray`, `torch.Tensor`):
Predicted image intrinsics with values in the range [0, 1]. The shape is $(numimages * numtargets) \times 3
\times height \times width$ for `torch.Tensor` or $(numimages * numtargets) \times height \times width
\times 3$ for `np.ndarray`, where `numtargets` corresponds to the number of predicted target modalities of
the intrinsic image decomposition.
Predicted image intrinsics with values in the range [0, 1]. The shape is `(numimages * numtargets) × 3 ×
height × width` for `torch.Tensor` or `(numimages * numtargets) × height × width × 3` for `np.ndarray`,
where `numtargets` corresponds to the number of predicted target modalities of the intrinsic image
decomposition.
uncertainty (`None`, `np.ndarray`, `torch.Tensor`):
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is $(numimages *
numtargets) \times 3 \times height \times width$ for `torch.Tensor` or $(numimages * numtargets) \times
height \times width \times 3$ for `np.ndarray`.
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is `(numimages *
numtargets) × 3 × height × width` for `torch.Tensor` or `(numimages * numtargets) × height × width × 3` for
`np.ndarray`.
latent (`None`, `torch.Tensor`):
Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
The shape is $(numimages * numensemble) \times (numtargets * 4) \times latentheight \times latentwidth$.
The shape is `(numimages * numensemble) × (numtargets * 4) × latentheight × latentwidth`.
"""
prediction: Union[np.ndarray, torch.Tensor]

View File

@@ -81,15 +81,14 @@ class MarigoldNormalsOutput(BaseOutput):
Args:
prediction (`np.ndarray`, `torch.Tensor`):
Predicted normals with values in the range [-1, 1]. The shape is $numimages \times 3 \times height \times
width$ for `torch.Tensor` or $numimages \times height \times width \times 3$ for `np.ndarray`.
Predicted normals with values in the range [-1, 1]. The shape is `numimages × 3 × height × width` for
`torch.Tensor` or `numimages × height × width × 3` for `np.ndarray`.
uncertainty (`None`, `np.ndarray`, `torch.Tensor`):
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is $numimages
\times 1 \times height \times width$ for `torch.Tensor` or $numimages \times height \times width \times 1$
for `np.ndarray`.
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is `numimages × 1 ×
height × width` for `torch.Tensor` or `numimages × height × width × 1` for `np.ndarray`.
latent (`None`, `torch.Tensor`):
Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
The shape is $numimages * numensemble \times 4 \times latentheight \times latentwidth$.
The shape is `numimages * numensemble × 4 × latentheight × latentwidth`.
"""
prediction: Union[np.ndarray, torch.Tensor]