mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[Tests] Improve transformers model test suite coverage - Hunyuan DiT (#8916)
* add hunyuan model test * apply suggestions * reduce dims further * reduce dims further * run make style --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
This commit is contained in:
113
tests/models/transformers/test_models_transformer_hunyuan_dit.py
Normal file
113
tests/models/transformers/test_models_transformer_hunyuan_dit.py
Normal file
@@ -0,0 +1,113 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import HunyuanDiT2DModel
|
||||
from diffusers.utils.testing_utils import (
|
||||
enable_full_determinism,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
from ..test_modeling_common import ModelTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class HunyuanDiTTests(ModelTesterMixin, unittest.TestCase):
|
||||
model_class = HunyuanDiT2DModel
|
||||
main_input_name = "hidden_states"
|
||||
|
||||
@property
|
||||
def dummy_input(self):
|
||||
batch_size = 2
|
||||
num_channels = 4
|
||||
height = width = 8
|
||||
embedding_dim = 8
|
||||
sequence_length = 4
|
||||
sequence_length_t5 = 4
|
||||
|
||||
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
|
||||
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
|
||||
text_embedding_mask = torch.ones(size=(batch_size, sequence_length)).to(torch_device)
|
||||
encoder_hidden_states_t5 = torch.randn((batch_size, sequence_length_t5, embedding_dim)).to(torch_device)
|
||||
text_embedding_mask_t5 = torch.ones(size=(batch_size, sequence_length_t5)).to(torch_device)
|
||||
timestep = torch.randint(0, 1000, size=(batch_size,), dtype=encoder_hidden_states.dtype).to(torch_device)
|
||||
|
||||
original_size = [1024, 1024]
|
||||
target_size = [16, 16]
|
||||
crops_coords_top_left = [0, 0]
|
||||
add_time_ids = list(original_size + target_size + crops_coords_top_left)
|
||||
add_time_ids = torch.tensor([add_time_ids, add_time_ids], dtype=encoder_hidden_states.dtype).to(torch_device)
|
||||
style = torch.zeros(size=(batch_size,), dtype=int).to(torch_device)
|
||||
image_rotary_emb = [
|
||||
torch.ones(size=(1, 8), dtype=encoder_hidden_states.dtype),
|
||||
torch.zeros(size=(1, 8), dtype=encoder_hidden_states.dtype),
|
||||
]
|
||||
|
||||
return {
|
||||
"hidden_states": hidden_states,
|
||||
"encoder_hidden_states": encoder_hidden_states,
|
||||
"text_embedding_mask": text_embedding_mask,
|
||||
"encoder_hidden_states_t5": encoder_hidden_states_t5,
|
||||
"text_embedding_mask_t5": text_embedding_mask_t5,
|
||||
"timestep": timestep,
|
||||
"image_meta_size": add_time_ids,
|
||||
"style": style,
|
||||
"image_rotary_emb": image_rotary_emb,
|
||||
}
|
||||
|
||||
@property
|
||||
def input_shape(self):
|
||||
return (4, 8, 8)
|
||||
|
||||
@property
|
||||
def output_shape(self):
|
||||
return (8, 8, 8)
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
init_dict = {
|
||||
"sample_size": 8,
|
||||
"patch_size": 2,
|
||||
"in_channels": 4,
|
||||
"num_layers": 1,
|
||||
"attention_head_dim": 8,
|
||||
"num_attention_heads": 2,
|
||||
"cross_attention_dim": 8,
|
||||
"cross_attention_dim_t5": 8,
|
||||
"pooled_projection_dim": 4,
|
||||
"hidden_size": 16,
|
||||
"text_len": 4,
|
||||
"text_len_t5": 4,
|
||||
"activation_fn": "gelu-approximate",
|
||||
}
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
|
||||
def test_output(self):
|
||||
super().test_output(
|
||||
expected_output_shape=(self.dummy_input[self.main_input_name].shape[0],) + self.output_shape
|
||||
)
|
||||
|
||||
@unittest.skip("HunyuanDIT use a custom processor HunyuanAttnProcessor2_0")
|
||||
def test_set_xformers_attn_processor_for_determinism(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("HunyuanDIT use a custom processor HunyuanAttnProcessor2_0")
|
||||
def test_set_attn_processor_for_determinism(self):
|
||||
pass
|
||||
Reference in New Issue
Block a user