mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Improve docstrings and type hints in scheduling_euler_ancestral_discrete.py (#12766)
refactor: add type hints to methods and update docstrings for parameters.
This commit is contained in:
@@ -94,7 +94,7 @@ def betas_for_alpha_bar(
|
||||
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
|
||||
def rescale_zero_terminal_snr(betas):
|
||||
def rescale_zero_terminal_snr(betas: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
|
||||
|
||||
@@ -144,16 +144,16 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
The starting `beta` value of inference.
|
||||
beta_end (`float`, defaults to 0.02):
|
||||
The final `beta` value.
|
||||
beta_schedule (`str`, defaults to `"linear"`):
|
||||
beta_schedule (`"linear"`, `"scaled_linear"`, or `"squaredcos_cap_v2"`, defaults to `"linear"`):
|
||||
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
||||
`linear` or `scaled_linear`.
|
||||
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
||||
trained_betas (`np.ndarray`, *optional*):
|
||||
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
||||
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
||||
prediction_type (`"epsilon"`, `"sample"`, or `"v_prediction"`, defaults to `"epsilon"`, *optional*):
|
||||
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
||||
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
||||
Video](https://huggingface.co/papers/2210.02303) paper).
|
||||
timestep_spacing (`str`, defaults to `"linspace"`):
|
||||
timestep_spacing (`"linspace"`, `"leading"`, or `"trailing"`, defaults to `"linspace"`):
|
||||
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
||||
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
||||
steps_offset (`int`, defaults to 0):
|
||||
@@ -173,13 +173,13 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.0001,
|
||||
beta_end: float = 0.02,
|
||||
beta_schedule: str = "linear",
|
||||
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
prediction_type: str = "epsilon",
|
||||
timestep_spacing: str = "linspace",
|
||||
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
|
||||
timestep_spacing: Literal["linspace", "leading", "trailing"] = "linspace",
|
||||
steps_offset: int = 0,
|
||||
rescale_betas_zero_snr: bool = False,
|
||||
):
|
||||
) -> None:
|
||||
if trained_betas is not None:
|
||||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||||
elif beta_schedule == "linear":
|
||||
@@ -219,7 +219,7 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||||
|
||||
@property
|
||||
def init_noise_sigma(self):
|
||||
def init_noise_sigma(self) -> torch.Tensor:
|
||||
# standard deviation of the initial noise distribution
|
||||
if self.config.timestep_spacing in ["linspace", "trailing"]:
|
||||
return self.sigmas.max()
|
||||
@@ -227,21 +227,21 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
return (self.sigmas.max() ** 2 + 1) ** 0.5
|
||||
|
||||
@property
|
||||
def step_index(self):
|
||||
def step_index(self) -> Optional[int]:
|
||||
"""
|
||||
The index counter for current timestep. It will increase 1 after each scheduler step.
|
||||
"""
|
||||
return self._step_index
|
||||
|
||||
@property
|
||||
def begin_index(self):
|
||||
def begin_index(self) -> Optional[int]:
|
||||
"""
|
||||
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
||||
"""
|
||||
return self._begin_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
||||
def set_begin_index(self, begin_index: int = 0):
|
||||
def set_begin_index(self, begin_index: int = 0) -> None:
|
||||
"""
|
||||
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
||||
|
||||
@@ -259,7 +259,7 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
sample (`torch.Tensor`):
|
||||
The input sample.
|
||||
timestep (`int`, *optional*):
|
||||
timestep (`float` or `torch.Tensor`):
|
||||
The current timestep in the diffusion chain.
|
||||
|
||||
Returns:
|
||||
@@ -275,7 +275,7 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.is_scale_input_called = True
|
||||
return sample
|
||||
|
||||
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
||||
def set_timesteps(self, num_inference_steps: int, device: Optional[Union[str, torch.device]] = None) -> None:
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
@@ -381,13 +381,13 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from learned diffusion model.
|
||||
timestep (`float`):
|
||||
timestep (`float` or `torch.Tensor`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.Tensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
generator (`torch.Generator`, *optional*):
|
||||
A random number generator.
|
||||
return_dict (`bool`):
|
||||
return_dict (`bool`, defaults to `True`):
|
||||
Whether or not to return a
|
||||
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
|
||||
|
||||
@@ -517,5 +517,5 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
noisy_samples = original_samples + noise * sigma
|
||||
return noisy_samples
|
||||
|
||||
def __len__(self):
|
||||
def __len__(self) -> int:
|
||||
return self.config.num_train_timesteps
|
||||
|
||||
Reference in New Issue
Block a user