1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[Stable Diffusion] Add components function (#889)

* [Stable Diffusion] Add components function

* uP
This commit is contained in:
Patrick von Platen
2022-10-20 13:28:11 +02:00
committed by GitHub
parent 2a0c823527
commit 83f8a5ff70
4 changed files with 112 additions and 1 deletions

View File

@@ -32,6 +32,9 @@ Any pipeline object can be saved locally with [`~DiffusionPipeline.save_pretrain
[[autodoc]] DiffusionPipeline
- from_pretrained
- save_pretrained
- to
- device
- components
## ImagePipelineOutput
By default diffusion pipelines return an object of class

View File

@@ -17,6 +17,26 @@ For more details about how Stable Diffusion works and how it differs from the ba
| [pipeline_stable_diffusion_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py) | *Image-to-Image Text-Guided Generation* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb) | [🤗 Diffuse the Rest](https://huggingface.co/spaces/huggingface/diffuse-the-rest)
| [pipeline_stable_diffusion_inpaint.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py) | **Experimental** *Text-Guided Image Inpainting* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb) | Coming soon
## Tips
If you want to use all possible use cases in a single `DiffusionPipeline` you can either:
- Make use of the [Stable Diffusion Mega Pipeline](https://github.com/huggingface/diffusers/tree/main/examples/community#stable-diffusion-mega) or
- Make use of the `components` functionality to instantiate all components in the most memory-efficient way:
```python
>>> from diffusers import (
... StableDiffusionPipeline,
... StableDiffusionImg2ImgPipeline,
... StableDiffusionInpaintPipeline,
... )
>>> img2text = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
>>> img2img = StableDiffusionImg2ImgPipeline(**img2text.components)
>>> inpaint = StableDiffusionInpaintPipeline(**img2text.components)
>>> # now you can use img2text(...), img2img(...), inpaint(...) just like the call methods of each respective pipeline
```
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -18,7 +18,7 @@ import importlib
import inspect
import os
from dataclasses import dataclass
from typing import List, Optional, Union
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
@@ -561,6 +561,41 @@ class DiffusionPipeline(ConfigMixin):
model = pipeline_class(**init_kwargs)
return model
@property
def components(self) -> Dict[str, Any]:
r"""
The `self.compenents` property can be useful to run different pipelines with the same weights and
configurations to not have to re-allocate memory.
Examples:
```py
>>> from diffusers import (
... StableDiffusionPipeline,
... StableDiffusionImg2ImgPipeline,
... StableDiffusionInpaintPipeline,
... )
>>> img2text = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
>>> img2img = StableDiffusionImg2ImgPipeline(**img2text.components)
>>> inpaint = StableDiffusionInpaintPipeline(**img2text.components)
```
Returns:
A dictionaly containing all the modules needed to initialize the pipleline.
"""
components = {k: getattr(self, k) for k in self.config.keys() if not k.startswith("_")}
expected_modules = set(inspect.signature(self.__init__).parameters.keys()) - set(["self"])
if set(components.keys()) != expected_modules:
raise ValueError(
f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
f" {expected_modules} to be defined, but {components} are defined."
)
return components
@staticmethod
def numpy_to_pil(images):
"""

View File

@@ -1391,6 +1391,59 @@ class PipelineFastTests(unittest.TestCase):
assert image.shape == (1, 128, 128, 3)
def test_components(self):
"""Test that components property works correctly"""
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
# make sure here that pndm scheduler skips prk
inpaint = StableDiffusionInpaintPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=self.dummy_safety_checker,
feature_extractor=self.dummy_extractor,
)
img2img = StableDiffusionImg2ImgPipeline(**inpaint.components)
text2img = StableDiffusionPipeline(**inpaint.components)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
image_inpaint = inpaint(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
init_image=init_image,
mask_image=mask_image,
).images
image_img2img = img2img(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
init_image=init_image,
).images
image_text2img = text2img(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
).images
assert image_inpaint.shape == (1, 32, 32, 3)
assert image_img2img.shape == (1, 32, 32, 3)
assert image_text2img.shape == (1, 128, 128, 3)
class PipelineTesterMixin(unittest.TestCase):
def tearDown(self):