mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Implement FlaxModelMixin (#493)
* Implement `FlaxModelMixin` * Rm unused method `framework` * Update src/diffusers/modeling_flax_utils.py Co-authored-by: Suraj Patil <surajp815@gmail.com> * some more changes * make style * Add comment * Update src/diffusers/modeling_flax_utils.py Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * Rm unneeded comment * Update docstrings * correct ignore kwargs * make style * Update docstring examples * Make style * Update src/diffusers/modeling_flax_utils.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Rm incorrect docstring * Add FlaxModelMixin to __init__.py * make fix-copies Co-authored-by: Suraj Patil <surajp815@gmail.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
This commit is contained in:
@@ -63,6 +63,7 @@ else:
|
||||
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
|
||||
|
||||
if is_flax_available():
|
||||
from .modeling_flax_utils import FlaxModelMixin
|
||||
from .schedulers import FlaxPNDMScheduler
|
||||
else:
|
||||
from .utils.dummy_flax_objects import * # noqa F403
|
||||
|
||||
@@ -14,6 +14,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" ConfigMixinuration base class and utilities."""
|
||||
import dataclasses
|
||||
import functools
|
||||
import inspect
|
||||
import json
|
||||
@@ -271,6 +272,11 @@ class ConfigMixin:
|
||||
# remove general kwargs if present in dict
|
||||
if "kwargs" in expected_keys:
|
||||
expected_keys.remove("kwargs")
|
||||
# remove flax interal keys
|
||||
if hasattr(cls, "_flax_internal_args"):
|
||||
for arg in cls._flax_internal_args:
|
||||
expected_keys.remove(arg)
|
||||
|
||||
# remove keys to be ignored
|
||||
if len(cls.ignore_for_config) > 0:
|
||||
expected_keys = expected_keys - set(cls.ignore_for_config)
|
||||
@@ -401,3 +407,44 @@ def register_to_config(init):
|
||||
getattr(self, "register_to_config")(**new_kwargs)
|
||||
|
||||
return inner_init
|
||||
|
||||
|
||||
def flax_register_to_config(cls):
|
||||
original_init = cls.__init__
|
||||
|
||||
@functools.wraps(original_init)
|
||||
def init(self, *args, **kwargs):
|
||||
if not isinstance(self, ConfigMixin):
|
||||
raise RuntimeError(
|
||||
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
|
||||
"not inherit from `ConfigMixin`."
|
||||
)
|
||||
|
||||
# Ignore private kwargs in the init. Retrieve all passed attributes
|
||||
init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
|
||||
|
||||
# Retrieve default values
|
||||
fields = dataclasses.fields(self)
|
||||
default_kwargs = {}
|
||||
for field in fields:
|
||||
# ignore flax specific attributes
|
||||
if field.name in self._flax_internal_args:
|
||||
continue
|
||||
if type(field.default) == dataclasses._MISSING_TYPE:
|
||||
default_kwargs[field.name] = None
|
||||
else:
|
||||
default_kwargs[field.name] = getattr(self, field.name)
|
||||
|
||||
# Make sure init_kwargs override default kwargs
|
||||
new_kwargs = {**default_kwargs, **init_kwargs}
|
||||
|
||||
# Get positional arguments aligned with kwargs
|
||||
for i, arg in enumerate(args):
|
||||
name = fields[i].name
|
||||
new_kwargs[name] = arg
|
||||
|
||||
getattr(self, "register_to_config")(**new_kwargs)
|
||||
original_init(self, *args, **kwargs)
|
||||
|
||||
cls.__init__ = init
|
||||
return cls
|
||||
|
||||
461
src/diffusers/modeling_flax_utils.py
Normal file
461
src/diffusers/modeling_flax_utils.py
Normal file
@@ -0,0 +1,461 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
from pickle import UnpicklingError
|
||||
from typing import Any, Dict, Union
|
||||
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
import msgpack.exceptions
|
||||
from flax.core.frozen_dict import FrozenDict
|
||||
from flax.serialization import from_bytes, to_bytes
|
||||
from flax.traverse_util import flatten_dict, unflatten_dict
|
||||
from huggingface_hub import hf_hub_download
|
||||
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError
|
||||
from requests import HTTPError
|
||||
|
||||
from .modeling_utils import WEIGHTS_NAME
|
||||
from .utils import CONFIG_NAME, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, logging
|
||||
|
||||
|
||||
FLAX_WEIGHTS_NAME = "diffusion_flax_model.msgpack"
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class FlaxModelMixin:
|
||||
r"""
|
||||
Base class for all flax models.
|
||||
|
||||
[`FlaxModelMixin`] takes care of storing the configuration of the models and handles methods for loading,
|
||||
downloading and saving models.
|
||||
"""
|
||||
config_name = CONFIG_NAME
|
||||
_automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
|
||||
_flax_internal_args = ["name", "parent"]
|
||||
|
||||
@classmethod
|
||||
def _from_config(cls, config, **kwargs):
|
||||
"""
|
||||
All context managers that the model should be initialized under go here.
|
||||
"""
|
||||
return cls(config, **kwargs)
|
||||
|
||||
def _cast_floating_to(self, params: Union[Dict, FrozenDict], dtype: jnp.dtype, mask: Any = None) -> Any:
|
||||
"""
|
||||
Helper method to cast floating-point values of given parameter `PyTree` to given `dtype`.
|
||||
"""
|
||||
|
||||
# taken from https://github.com/deepmind/jmp/blob/3a8318abc3292be38582794dbf7b094e6583b192/jmp/_src/policy.py#L27
|
||||
def conditional_cast(param):
|
||||
if isinstance(param, jnp.ndarray) and jnp.issubdtype(param.dtype, jnp.floating):
|
||||
param = param.astype(dtype)
|
||||
return param
|
||||
|
||||
if mask is None:
|
||||
return jax.tree_map(conditional_cast, params)
|
||||
|
||||
flat_params = flatten_dict(params)
|
||||
flat_mask, _ = jax.tree_flatten(mask)
|
||||
|
||||
for masked, key in zip(flat_mask, flat_params.keys()):
|
||||
if masked:
|
||||
param = flat_params[key]
|
||||
flat_params[key] = conditional_cast(param)
|
||||
|
||||
return unflatten_dict(flat_params)
|
||||
|
||||
def to_bf16(self, params: Union[Dict, FrozenDict], mask: Any = None):
|
||||
r"""
|
||||
Cast the floating-point `params` to `jax.numpy.bfloat16`. This returns a new `params` tree and does not cast
|
||||
the `params` in place.
|
||||
|
||||
This method can be used on TPU to explicitly convert the model parameters to bfloat16 precision to do full
|
||||
half-precision training or to save weights in bfloat16 for inference in order to save memory and improve speed.
|
||||
|
||||
Arguments:
|
||||
params (`Union[Dict, FrozenDict]`):
|
||||
A `PyTree` of model parameters.
|
||||
mask (`Union[Dict, FrozenDict]`):
|
||||
A `PyTree` with same structure as the `params` tree. The leaves should be booleans, `True` for params
|
||||
you want to cast, and should be `False` for those you want to skip.
|
||||
|
||||
Examples:
|
||||
|
||||
```python
|
||||
>>> from diffusers import FlaxUNet2DConditionModel
|
||||
|
||||
>>> # load model
|
||||
>>> model, params = FlaxUNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4")
|
||||
>>> # By default, the model parameters will be in fp32 precision, to cast these to bfloat16 precision
|
||||
>>> params = model.to_bf16(params)
|
||||
>>> # If you don't want to cast certain parameters (for example layer norm bias and scale)
|
||||
>>> # then pass the mask as follows
|
||||
>>> from flax import traverse_util
|
||||
|
||||
>>> model, params = FlaxUNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4")
|
||||
>>> flat_params = traverse_util.flatten_dict(params)
|
||||
>>> mask = {
|
||||
... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale"))
|
||||
... for path in flat_params
|
||||
... }
|
||||
>>> mask = traverse_util.unflatten_dict(mask)
|
||||
>>> params = model.to_bf16(params, mask)
|
||||
```"""
|
||||
return self._cast_floating_to(params, jnp.bfloat16, mask)
|
||||
|
||||
def to_fp32(self, params: Union[Dict, FrozenDict], mask: Any = None):
|
||||
r"""
|
||||
Cast the floating-point `params` to `jax.numpy.float32`. This method can be used to explicitly convert the
|
||||
model parameters to fp32 precision. This returns a new `params` tree and does not cast the `params` in place.
|
||||
|
||||
Arguments:
|
||||
params (`Union[Dict, FrozenDict]`):
|
||||
A `PyTree` of model parameters.
|
||||
mask (`Union[Dict, FrozenDict]`):
|
||||
A `PyTree` with same structure as the `params` tree. The leaves should be booleans, `True` for params
|
||||
you want to cast, and should be `False` for those you want to skip
|
||||
|
||||
Examples:
|
||||
|
||||
```python
|
||||
>>> from diffusers import FlaxUNet2DConditionModel
|
||||
|
||||
>>> # Download model and configuration from huggingface.co
|
||||
>>> model, params = FlaxUNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4")
|
||||
>>> # By default, the model params will be in fp32, to illustrate the use of this method,
|
||||
>>> # we'll first cast to fp16 and back to fp32
|
||||
>>> params = model.to_f16(params)
|
||||
>>> # now cast back to fp32
|
||||
>>> params = model.to_fp32(params)
|
||||
```"""
|
||||
return self._cast_floating_to(params, jnp.float32, mask)
|
||||
|
||||
def to_fp16(self, params: Union[Dict, FrozenDict], mask: Any = None):
|
||||
r"""
|
||||
Cast the floating-point `params` to `jax.numpy.float16`. This returns a new `params` tree and does not cast the
|
||||
`params` in place.
|
||||
|
||||
This method can be used on GPU to explicitly convert the model parameters to float16 precision to do full
|
||||
half-precision training or to save weights in float16 for inference in order to save memory and improve speed.
|
||||
|
||||
Arguments:
|
||||
params (`Union[Dict, FrozenDict]`):
|
||||
A `PyTree` of model parameters.
|
||||
mask (`Union[Dict, FrozenDict]`):
|
||||
A `PyTree` with same structure as the `params` tree. The leaves should be booleans, `True` for params
|
||||
you want to cast, and should be `False` for those you want to skip
|
||||
|
||||
Examples:
|
||||
|
||||
```python
|
||||
>>> from diffusers import FlaxUNet2DConditionModel
|
||||
|
||||
>>> # load model
|
||||
>>> model, params = FlaxUNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4")
|
||||
>>> # By default, the model params will be in fp32, to cast these to float16
|
||||
>>> params = model.to_fp16(params)
|
||||
>>> # If you want don't want to cast certain parameters (for example layer norm bias and scale)
|
||||
>>> # then pass the mask as follows
|
||||
>>> from flax import traverse_util
|
||||
|
||||
>>> model, params = FlaxUNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4")
|
||||
>>> flat_params = traverse_util.flatten_dict(params)
|
||||
>>> mask = {
|
||||
... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale"))
|
||||
... for path in flat_params
|
||||
... }
|
||||
>>> mask = traverse_util.unflatten_dict(mask)
|
||||
>>> params = model.to_fp16(params, mask)
|
||||
```"""
|
||||
return self._cast_floating_to(params, jnp.float16, mask)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(
|
||||
cls,
|
||||
pretrained_model_name_or_path: Union[str, os.PathLike],
|
||||
dtype: jnp.dtype = jnp.float32,
|
||||
*model_args,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Instantiate a pretrained flax model from a pre-trained model configuration.
|
||||
|
||||
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
|
||||
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
|
||||
task.
|
||||
|
||||
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
|
||||
weights are discarded.
|
||||
|
||||
Parameters:
|
||||
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
||||
Can be either:
|
||||
|
||||
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
||||
Valid model ids are namespaced under a user or organization name, like
|
||||
`CompVis/stable-diffusion-v1-4`.
|
||||
- A path to a *directory* containing model weights saved using [`~ModelMixin.save_pretrained`],
|
||||
e.g., `./my_model_directory/`.
|
||||
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
||||
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
||||
`jax.numpy.bfloat16` (on TPUs).
|
||||
|
||||
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
||||
specified all the computation will be performed with the given `dtype`.
|
||||
|
||||
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
||||
parameters.**
|
||||
|
||||
If you wish to change the dtype of the model parameters, see [`~ModelMixin.to_fp16`] and
|
||||
[`~ModelMixin.to_bf16`].
|
||||
model_args (sequence of positional arguments, *optional*):
|
||||
All remaining positional arguments will be passed to the underlying model's `__init__` method.
|
||||
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
||||
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
||||
standard cache should not be used.
|
||||
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
|
||||
as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
|
||||
checkpoint with 3 labels).
|
||||
force_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
||||
cached versions if they exist.
|
||||
resume_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
|
||||
file exists.
|
||||
proxies (`Dict[str, str]`, *optional*):
|
||||
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
||||
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
||||
local_files_only(`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to only look at local files (i.e., do not try to download the model).
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
||||
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
||||
identifier allowed by git.
|
||||
kwargs (remaining dictionary of keyword arguments, *optional*):
|
||||
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
||||
`output_attentions=True`). Behaves differently depending on whether a `config` is provided or
|
||||
automatically loaded:
|
||||
|
||||
- If a configuration is provided with `config`, `**kwargs` will be directly passed to the
|
||||
underlying model's `__init__` method (we assume all relevant updates to the configuration have
|
||||
already been done)
|
||||
- If a configuration is not provided, `kwargs` will be first passed to the configuration class
|
||||
initialization function ([`~ConfigMixin.from_config`]). Each key of `kwargs` that corresponds to
|
||||
a configuration attribute will be used to override said attribute with the supplied `kwargs`
|
||||
value. Remaining keys that do not correspond to any configuration attribute will be passed to the
|
||||
underlying model's `__init__` function.
|
||||
|
||||
Examples:
|
||||
|
||||
```python
|
||||
>>> from diffusers import FlaxUNet2DConditionModel
|
||||
|
||||
>>> # Download model and configuration from huggingface.co and cache.
|
||||
>>> model, params = FlaxUNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4")
|
||||
>>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
|
||||
>>> model, params = FlaxUNet2DConditionModel.from_pretrained("./test/saved_model/")
|
||||
```"""
|
||||
config = kwargs.pop("config", None)
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", False)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
from_auto_class = kwargs.pop("_from_auto", False)
|
||||
subfolder = kwargs.pop("subfolder", None)
|
||||
|
||||
user_agent = {"file_type": "model", "framework": "flax", "from_auto_class": from_auto_class}
|
||||
|
||||
# Load config if we don't provide a configuration
|
||||
config_path = config if config is not None else pretrained_model_name_or_path
|
||||
model, model_kwargs = cls.from_config(
|
||||
config_path,
|
||||
cache_dir=cache_dir,
|
||||
return_unused_kwargs=True,
|
||||
force_download=force_download,
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
revision=revision,
|
||||
# model args
|
||||
dtype=dtype,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Load model
|
||||
if os.path.isdir(pretrained_model_name_or_path):
|
||||
if os.path.isfile(os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)):
|
||||
# Load from a Flax checkpoint
|
||||
model_file = os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)
|
||||
# At this stage we don't have a weight file so we will raise an error.
|
||||
elif os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME):
|
||||
raise EnvironmentError(
|
||||
f"Error no file named {FLAX_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} "
|
||||
"but there is a file for PyTorch weights."
|
||||
)
|
||||
else:
|
||||
raise EnvironmentError(
|
||||
f"Error no file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory "
|
||||
f"{pretrained_model_name_or_path}."
|
||||
)
|
||||
else:
|
||||
try:
|
||||
model_file = hf_hub_download(
|
||||
pretrained_model_name_or_path,
|
||||
filename=FLAX_WEIGHTS_NAME,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
user_agent=user_agent,
|
||||
subfolder=subfolder,
|
||||
revision=revision,
|
||||
)
|
||||
|
||||
except RepositoryNotFoundError:
|
||||
raise EnvironmentError(
|
||||
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
|
||||
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
|
||||
"token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
|
||||
"login` and pass `use_auth_token=True`."
|
||||
)
|
||||
except RevisionNotFoundError:
|
||||
raise EnvironmentError(
|
||||
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
|
||||
"this model name. Check the model page at "
|
||||
f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
|
||||
)
|
||||
except EntryNotFoundError:
|
||||
raise EnvironmentError(
|
||||
f"{pretrained_model_name_or_path} does not appear to have a file named {FLAX_WEIGHTS_NAME}."
|
||||
)
|
||||
except HTTPError as err:
|
||||
raise EnvironmentError(
|
||||
f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n"
|
||||
f"{err}"
|
||||
)
|
||||
except ValueError:
|
||||
raise EnvironmentError(
|
||||
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
|
||||
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
|
||||
f" directory containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}.\nCheckout your"
|
||||
" internet connection or see how to run the library in offline mode at"
|
||||
" 'https://huggingface.co/docs/transformers/installation#offline-mode'."
|
||||
)
|
||||
except EnvironmentError:
|
||||
raise EnvironmentError(
|
||||
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
|
||||
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
|
||||
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
|
||||
f"containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}."
|
||||
)
|
||||
|
||||
try:
|
||||
with open(model_file, "rb") as state_f:
|
||||
state = from_bytes(cls, state_f.read())
|
||||
except (UnpicklingError, msgpack.exceptions.ExtraData) as e:
|
||||
try:
|
||||
with open(model_file) as f:
|
||||
if f.read().startswith("version"):
|
||||
raise OSError(
|
||||
"You seem to have cloned a repository without having git-lfs installed. Please"
|
||||
" install git-lfs and run `git lfs install` followed by `git lfs pull` in the"
|
||||
" folder you cloned."
|
||||
)
|
||||
else:
|
||||
raise ValueError from e
|
||||
except (UnicodeDecodeError, ValueError):
|
||||
raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. ")
|
||||
# make sure all arrays are stored as jnp.arrays
|
||||
# NOTE: This is to prevent a bug this will be fixed in Flax >= v0.3.4:
|
||||
# https://github.com/google/flax/issues/1261
|
||||
state = jax.tree_util.tree_map(lambda x: jax.device_put(x, jax.devices("cpu")[0]), state)
|
||||
|
||||
# flatten dicts
|
||||
state = flatten_dict(state)
|
||||
|
||||
# dictionary of key: dtypes for the model params
|
||||
param_dtypes = jax.tree_map(lambda x: x.dtype, state)
|
||||
# extract keys of parameters not in jnp.float32
|
||||
fp16_params = [k for k in param_dtypes if param_dtypes[k] == jnp.float16]
|
||||
bf16_params = [k for k in param_dtypes if param_dtypes[k] == jnp.bfloat16]
|
||||
|
||||
# raise a warning if any of the parameters are not in jnp.float32
|
||||
if len(fp16_params) > 0:
|
||||
logger.warning(
|
||||
f"Some of the weights of {model.__class__.__name__} were initialized in float16 precision from "
|
||||
f"the model checkpoint at {pretrained_model_name_or_path}:\n{fp16_params}\n"
|
||||
"You should probably UPCAST the model weights to float32 if this was not intended. "
|
||||
"See [`~ModelMixin.to_fp32`] for further information on how to do this."
|
||||
)
|
||||
|
||||
if len(bf16_params) > 0:
|
||||
logger.warning(
|
||||
f"Some of the weights of {model.__class__.__name__} were initialized in bfloat16 precision from "
|
||||
f"the model checkpoint at {pretrained_model_name_or_path}:\n{bf16_params}\n"
|
||||
"You should probably UPCAST the model weights to float32 if this was not intended. "
|
||||
"See [`~ModelMixin.to_fp32`] for further information on how to do this."
|
||||
)
|
||||
|
||||
return model, unflatten_dict(state)
|
||||
|
||||
def save_pretrained(
|
||||
self,
|
||||
save_directory: Union[str, os.PathLike],
|
||||
params: Union[Dict, FrozenDict],
|
||||
is_main_process: bool = True,
|
||||
):
|
||||
"""
|
||||
Save a model and its configuration file to a directory, so that it can be re-loaded using the
|
||||
`[`~FlaxModelMixin.from_pretrained`]` class method
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to which to save. Will be created if it doesn't exist.
|
||||
params (`Union[Dict, FrozenDict]`):
|
||||
A `PyTree` of model parameters.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful when in distributed training like
|
||||
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
|
||||
the main process to avoid race conditions.
|
||||
"""
|
||||
if os.path.isfile(save_directory):
|
||||
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
||||
return
|
||||
|
||||
os.makedirs(save_directory, exist_ok=True)
|
||||
|
||||
model_to_save = self
|
||||
|
||||
# Attach architecture to the config
|
||||
# Save the config
|
||||
if is_main_process:
|
||||
model_to_save.save_config(save_directory)
|
||||
|
||||
# save model
|
||||
output_model_file = os.path.join(save_directory, FLAX_WEIGHTS_NAME)
|
||||
with open(output_model_file, "wb") as f:
|
||||
model_bytes = to_bytes(params)
|
||||
f.write(model_bytes)
|
||||
|
||||
logger.info(f"Model weights saved in {output_model_file}")
|
||||
@@ -4,6 +4,13 @@
|
||||
from ..utils import DummyObject, requires_backends
|
||||
|
||||
|
||||
class FlaxModelMixin(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
|
||||
class FlaxPNDMScheduler(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user