mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
config fixes (#3060)
This commit is contained in:
@@ -105,7 +105,7 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||
)
|
||||
|
||||
model = ModelWrapper(unet, scheduler.alphas_cumprod)
|
||||
if scheduler.prediction_type == "v_prediction":
|
||||
if scheduler.config.prediction_type == "v_prediction":
|
||||
self.k_diffusion_model = CompVisVDenoiser(model)
|
||||
else:
|
||||
self.k_diffusion_model = CompVisDenoiser(model)
|
||||
|
||||
@@ -60,9 +60,9 @@ class AudioDiffusionPipeline(DiffusionPipeline):
|
||||
input_module = self.vqvae if self.vqvae is not None else self.unet
|
||||
# For backwards compatibility
|
||||
sample_size = (
|
||||
(input_module.sample_size, input_module.sample_size)
|
||||
if type(input_module.sample_size) == int
|
||||
else input_module.sample_size
|
||||
(input_module.config.sample_size, input_module.config.sample_size)
|
||||
if type(input_module.config.sample_size) == int
|
||||
else input_module.config.sample_size
|
||||
)
|
||||
return sample_size
|
||||
|
||||
|
||||
@@ -113,7 +113,7 @@ class StableDiffusionKDiffusionPipeline(DiffusionPipeline, TextualInversionLoade
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
|
||||
model = ModelWrapper(unet, scheduler.alphas_cumprod)
|
||||
if scheduler.prediction_type == "v_prediction":
|
||||
if scheduler.config.prediction_type == "v_prediction":
|
||||
self.k_diffusion_model = CompVisVDenoiser(model)
|
||||
else:
|
||||
self.k_diffusion_model = CompVisDenoiser(model)
|
||||
|
||||
@@ -115,8 +115,11 @@ class PipelineFastTests(unittest.TestCase):
|
||||
output = pipe(generator=generator, steps=4, return_dict=False)
|
||||
image_from_tuple = output[0][0]
|
||||
|
||||
assert audio.shape == (1, (self.dummy_unet.sample_size[1] - 1) * mel.hop_length)
|
||||
assert image.height == self.dummy_unet.sample_size[0] and image.width == self.dummy_unet.sample_size[1]
|
||||
assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length)
|
||||
assert (
|
||||
image.height == self.dummy_unet.config.sample_size[0]
|
||||
and image.width == self.dummy_unet.config.sample_size[1]
|
||||
)
|
||||
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
|
||||
image_from_tuple_slice = np.frombuffer(image_from_tuple.tobytes(), dtype="uint8")[:10]
|
||||
expected_slice = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127])
|
||||
@@ -133,14 +136,14 @@ class PipelineFastTests(unittest.TestCase):
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
np.random.seed(0)
|
||||
raw_audio = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].sample_size[1] - 1) * mel.hop_length,))
|
||||
raw_audio = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,))
|
||||
generator = torch.Generator(device=device).manual_seed(42)
|
||||
output = pipe(raw_audio=raw_audio, generator=generator, start_step=5, steps=10)
|
||||
image = output.images[0]
|
||||
|
||||
assert (
|
||||
image.height == self.dummy_vqvae_and_unet[0].sample_size[0]
|
||||
and image.width == self.dummy_vqvae_and_unet[0].sample_size[1]
|
||||
image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0]
|
||||
and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1]
|
||||
)
|
||||
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
|
||||
expected_slice = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121])
|
||||
@@ -183,8 +186,8 @@ class PipelineIntegrationTests(unittest.TestCase):
|
||||
audio = output.audios[0]
|
||||
image = output.images[0]
|
||||
|
||||
assert audio.shape == (1, (pipe.unet.sample_size[1] - 1) * pipe.mel.hop_length)
|
||||
assert image.height == pipe.unet.sample_size[0] and image.width == pipe.unet.sample_size[1]
|
||||
assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length)
|
||||
assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1]
|
||||
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
|
||||
expected_slice = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26])
|
||||
|
||||
|
||||
Reference in New Issue
Block a user