mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
support bf16 for stable diffusion (#792)
* support bf16 for stable diffusion * fix typo * address review comments
This commit is contained in:
@@ -41,6 +41,13 @@ class Upsample2D(nn.Module):
|
||||
if self.use_conv_transpose:
|
||||
return self.conv(hidden_states)
|
||||
|
||||
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
||||
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
|
||||
# https://github.com/pytorch/pytorch/issues/86679
|
||||
dtype = hidden_states.dtype
|
||||
if dtype == torch.bfloat16:
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
|
||||
# if `output_size` is passed we force the interpolation output
|
||||
# size and do not make use of `scale_factor=2`
|
||||
if output_size is None:
|
||||
@@ -48,6 +55,10 @@ class Upsample2D(nn.Module):
|
||||
else:
|
||||
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
||||
|
||||
# If the input is bfloat16, we cast back to bfloat16
|
||||
if dtype == torch.bfloat16:
|
||||
hidden_states = hidden_states.to(dtype)
|
||||
|
||||
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
||||
if self.use_conv:
|
||||
if self.name == "conv":
|
||||
|
||||
@@ -327,7 +327,9 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||
image = self.vae.decode(latents).sample
|
||||
|
||||
image = (image / 2 + 0.5).clamp(0, 1)
|
||||
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
||||
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
||||
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
|
||||
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
|
||||
image, has_nsfw_concept = self.safety_checker(
|
||||
|
||||
@@ -38,8 +38,9 @@ class StableDiffusionSafetyChecker(PreTrainedModel):
|
||||
pooled_output = self.vision_model(clip_input)[1] # pooled_output
|
||||
image_embeds = self.visual_projection(pooled_output)
|
||||
|
||||
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().numpy()
|
||||
cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().numpy()
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
||||
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy()
|
||||
cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
|
||||
|
||||
result = []
|
||||
batch_size = image_embeds.shape[0]
|
||||
|
||||
Reference in New Issue
Block a user