mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[Docs] Fix incomplete docstring for resnet.py (#3438)
Fix incomplete docstrings for resnet.py
This commit is contained in:
@@ -24,14 +24,17 @@ from .attention import AdaGroupNorm
|
||||
|
||||
|
||||
class Upsample1D(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
"""A 1D upsampling layer with an optional convolution.
|
||||
|
||||
Parameters:
|
||||
channels: channels in the inputs and outputs.
|
||||
use_conv: a bool determining if a convolution is applied.
|
||||
use_conv_transpose:
|
||||
out_channels:
|
||||
channels (`int`):
|
||||
number of channels in the inputs and outputs.
|
||||
use_conv (`bool`, default `False`):
|
||||
option to use a convolution.
|
||||
use_conv_transpose (`bool`, default `False`):
|
||||
option to use a convolution transpose.
|
||||
out_channels (`int`, optional):
|
||||
number of output channels. Defaults to `channels`.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
||||
@@ -62,14 +65,17 @@ class Upsample1D(nn.Module):
|
||||
|
||||
|
||||
class Downsample1D(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
"""A 1D downsampling layer with an optional convolution.
|
||||
|
||||
Parameters:
|
||||
channels: channels in the inputs and outputs.
|
||||
use_conv: a bool determining if a convolution is applied.
|
||||
out_channels:
|
||||
padding:
|
||||
channels (`int`):
|
||||
number of channels in the inputs and outputs.
|
||||
use_conv (`bool`, default `False`):
|
||||
option to use a convolution.
|
||||
out_channels (`int`, optional):
|
||||
number of output channels. Defaults to `channels`.
|
||||
padding (`int`, default `1`):
|
||||
padding for the convolution.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
||||
@@ -93,14 +99,17 @@ class Downsample1D(nn.Module):
|
||||
|
||||
|
||||
class Upsample2D(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
"""A 2D upsampling layer with an optional convolution.
|
||||
|
||||
Parameters:
|
||||
channels: channels in the inputs and outputs.
|
||||
use_conv: a bool determining if a convolution is applied.
|
||||
use_conv_transpose:
|
||||
out_channels:
|
||||
channels (`int`):
|
||||
number of channels in the inputs and outputs.
|
||||
use_conv (`bool`, default `False`):
|
||||
option to use a convolution.
|
||||
use_conv_transpose (`bool`, default `False`):
|
||||
option to use a convolution transpose.
|
||||
out_channels (`int`, optional):
|
||||
number of output channels. Defaults to `channels`.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
||||
@@ -162,14 +171,17 @@ class Upsample2D(nn.Module):
|
||||
|
||||
|
||||
class Downsample2D(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
"""A 2D downsampling layer with an optional convolution.
|
||||
|
||||
Parameters:
|
||||
channels: channels in the inputs and outputs.
|
||||
use_conv: a bool determining if a convolution is applied.
|
||||
out_channels:
|
||||
padding:
|
||||
channels (`int`):
|
||||
number of channels in the inputs and outputs.
|
||||
use_conv (`bool`, default `False`):
|
||||
option to use a convolution.
|
||||
out_channels (`int`, optional):
|
||||
number of output channels. Defaults to `channels`.
|
||||
padding (`int`, default `1`):
|
||||
padding for the convolution.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
||||
@@ -209,6 +221,19 @@ class Downsample2D(nn.Module):
|
||||
|
||||
|
||||
class FirUpsample2D(nn.Module):
|
||||
"""A 2D FIR upsampling layer with an optional convolution.
|
||||
|
||||
Parameters:
|
||||
channels (`int`):
|
||||
number of channels in the inputs and outputs.
|
||||
use_conv (`bool`, default `False`):
|
||||
option to use a convolution.
|
||||
out_channels (`int`, optional):
|
||||
number of output channels. Defaults to `channels`.
|
||||
fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
|
||||
kernel for the FIR filter.
|
||||
"""
|
||||
|
||||
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
|
||||
super().__init__()
|
||||
out_channels = out_channels if out_channels else channels
|
||||
@@ -309,6 +334,19 @@ class FirUpsample2D(nn.Module):
|
||||
|
||||
|
||||
class FirDownsample2D(nn.Module):
|
||||
"""A 2D FIR downsampling layer with an optional convolution.
|
||||
|
||||
Parameters:
|
||||
channels (`int`):
|
||||
number of channels in the inputs and outputs.
|
||||
use_conv (`bool`, default `False`):
|
||||
option to use a convolution.
|
||||
out_channels (`int`, optional):
|
||||
number of output channels. Defaults to `channels`.
|
||||
fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
|
||||
kernel for the FIR filter.
|
||||
"""
|
||||
|
||||
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
|
||||
super().__init__()
|
||||
out_channels = out_channels if out_channels else channels
|
||||
|
||||
Reference in New Issue
Block a user