mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[tests] Remove more deprecated tests (#11895)
* remove k diffusion tests * remove script
This commit is contained in:
@@ -1,147 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2025 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import gc
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from diffusers import StableDiffusionKDiffusionPipeline
|
||||
from diffusers.utils.testing_utils import (
|
||||
backend_empty_cache,
|
||||
enable_full_determinism,
|
||||
nightly,
|
||||
require_torch_accelerator,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
@nightly
|
||||
@require_torch_accelerator
|
||||
class StableDiffusionPipelineIntegrationTests(unittest.TestCase):
|
||||
def setUp(self):
|
||||
# clean up the VRAM before each test
|
||||
super().setUp()
|
||||
gc.collect()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def tearDown(self):
|
||||
# clean up the VRAM after each test
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def test_stable_diffusion_1(self):
|
||||
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
||||
sd_pipe = sd_pipe.to(torch_device)
|
||||
sd_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
sd_pipe.set_scheduler("sample_euler")
|
||||
|
||||
prompt = "A painting of a squirrel eating a burger"
|
||||
generator = torch.manual_seed(0)
|
||||
output = sd_pipe([prompt], generator=generator, guidance_scale=9.0, num_inference_steps=20, output_type="np")
|
||||
|
||||
image = output.images
|
||||
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
|
||||
assert image.shape == (1, 512, 512, 3)
|
||||
expected_slice = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339])
|
||||
|
||||
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||||
|
||||
def test_stable_diffusion_2(self):
|
||||
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
|
||||
sd_pipe = sd_pipe.to(torch_device)
|
||||
sd_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
sd_pipe.set_scheduler("sample_euler")
|
||||
|
||||
prompt = "A painting of a squirrel eating a burger"
|
||||
generator = torch.manual_seed(0)
|
||||
output = sd_pipe([prompt], generator=generator, guidance_scale=9.0, num_inference_steps=20, output_type="np")
|
||||
|
||||
image = output.images
|
||||
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
|
||||
assert image.shape == (1, 512, 512, 3)
|
||||
expected_slice = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112])
|
||||
|
||||
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-1
|
||||
|
||||
def test_stable_diffusion_karras_sigmas(self):
|
||||
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
|
||||
sd_pipe = sd_pipe.to(torch_device)
|
||||
sd_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
sd_pipe.set_scheduler("sample_dpmpp_2m")
|
||||
|
||||
prompt = "A painting of a squirrel eating a burger"
|
||||
generator = torch.manual_seed(0)
|
||||
output = sd_pipe(
|
||||
[prompt],
|
||||
generator=generator,
|
||||
guidance_scale=7.5,
|
||||
num_inference_steps=15,
|
||||
output_type="np",
|
||||
use_karras_sigmas=True,
|
||||
)
|
||||
|
||||
image = output.images
|
||||
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
|
||||
assert image.shape == (1, 512, 512, 3)
|
||||
expected_slice = np.array(
|
||||
[0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048]
|
||||
)
|
||||
|
||||
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||||
|
||||
def test_stable_diffusion_noise_sampler_seed(self):
|
||||
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
||||
sd_pipe = sd_pipe.to(torch_device)
|
||||
sd_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
sd_pipe.set_scheduler("sample_dpmpp_sde")
|
||||
|
||||
prompt = "A painting of a squirrel eating a burger"
|
||||
seed = 0
|
||||
images1 = sd_pipe(
|
||||
[prompt],
|
||||
generator=torch.manual_seed(seed),
|
||||
noise_sampler_seed=seed,
|
||||
guidance_scale=9.0,
|
||||
num_inference_steps=20,
|
||||
output_type="np",
|
||||
).images
|
||||
images2 = sd_pipe(
|
||||
[prompt],
|
||||
generator=torch.manual_seed(seed),
|
||||
noise_sampler_seed=seed,
|
||||
guidance_scale=9.0,
|
||||
num_inference_steps=20,
|
||||
output_type="np",
|
||||
).images
|
||||
|
||||
assert images1.shape == (1, 512, 512, 3)
|
||||
assert images2.shape == (1, 512, 512, 3)
|
||||
assert np.abs(images1.flatten() - images2.flatten()).max() < 1e-2
|
||||
@@ -1,178 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2025 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import gc
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from diffusers import StableDiffusionXLKDiffusionPipeline
|
||||
from diffusers.utils.testing_utils import (
|
||||
Expectations,
|
||||
backend_empty_cache,
|
||||
enable_full_determinism,
|
||||
require_torch_accelerator,
|
||||
slow,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_accelerator
|
||||
class StableDiffusionXLKPipelineIntegrationTests(unittest.TestCase):
|
||||
dtype = torch.float16
|
||||
|
||||
def setUp(self):
|
||||
# clean up the VRAM before each test
|
||||
super().setUp()
|
||||
gc.collect()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def tearDown(self):
|
||||
# clean up the VRAM after each test
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def test_stable_diffusion_xl(self):
|
||||
sd_pipe = StableDiffusionXLKDiffusionPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=self.dtype
|
||||
)
|
||||
sd_pipe = sd_pipe.to(torch_device)
|
||||
sd_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
sd_pipe.set_scheduler("sample_euler")
|
||||
|
||||
prompt = "A painting of a squirrel eating a burger"
|
||||
generator = torch.manual_seed(0)
|
||||
output = sd_pipe(
|
||||
[prompt],
|
||||
generator=generator,
|
||||
guidance_scale=9.0,
|
||||
num_inference_steps=2,
|
||||
height=512,
|
||||
width=512,
|
||||
output_type="np",
|
||||
)
|
||||
|
||||
image = output.images
|
||||
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
|
||||
assert image.shape == (1, 512, 512, 3)
|
||||
expected_slice = np.array([0.5420, 0.5038, 0.2439, 0.5371, 0.4660, 0.1906, 0.5221, 0.4290, 0.2566])
|
||||
|
||||
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||||
|
||||
def test_stable_diffusion_karras_sigmas(self):
|
||||
sd_pipe = StableDiffusionXLKDiffusionPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=self.dtype
|
||||
)
|
||||
sd_pipe = sd_pipe.to(torch_device)
|
||||
sd_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
sd_pipe.set_scheduler("sample_dpmpp_2m")
|
||||
|
||||
prompt = "A painting of a squirrel eating a burger"
|
||||
generator = torch.manual_seed(0)
|
||||
output = sd_pipe(
|
||||
[prompt],
|
||||
generator=generator,
|
||||
guidance_scale=7.5,
|
||||
num_inference_steps=2,
|
||||
output_type="np",
|
||||
use_karras_sigmas=True,
|
||||
height=512,
|
||||
width=512,
|
||||
)
|
||||
|
||||
image = output.images
|
||||
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
|
||||
assert image.shape == (1, 512, 512, 3)
|
||||
expected_slices = Expectations(
|
||||
{
|
||||
("xpu", 3): np.array(
|
||||
[
|
||||
0.6128,
|
||||
0.6108,
|
||||
0.6109,
|
||||
0.5997,
|
||||
0.5988,
|
||||
0.5948,
|
||||
0.5903,
|
||||
0.597,
|
||||
0.5973,
|
||||
]
|
||||
),
|
||||
("cuda", 7): np.array(
|
||||
[
|
||||
0.6418,
|
||||
0.6424,
|
||||
0.6462,
|
||||
0.6271,
|
||||
0.6314,
|
||||
0.6295,
|
||||
0.6249,
|
||||
0.6339,
|
||||
0.6335,
|
||||
]
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
expected_slice = expected_slices.get_expectation()
|
||||
|
||||
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||||
|
||||
def test_stable_diffusion_noise_sampler_seed(self):
|
||||
sd_pipe = StableDiffusionXLKDiffusionPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=self.dtype
|
||||
)
|
||||
sd_pipe = sd_pipe.to(torch_device)
|
||||
sd_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
sd_pipe.set_scheduler("sample_dpmpp_sde")
|
||||
|
||||
prompt = "A painting of a squirrel eating a burger"
|
||||
seed = 0
|
||||
images1 = sd_pipe(
|
||||
[prompt],
|
||||
generator=torch.manual_seed(seed),
|
||||
noise_sampler_seed=seed,
|
||||
guidance_scale=9.0,
|
||||
num_inference_steps=2,
|
||||
output_type="np",
|
||||
height=512,
|
||||
width=512,
|
||||
).images
|
||||
images2 = sd_pipe(
|
||||
[prompt],
|
||||
generator=torch.manual_seed(seed),
|
||||
noise_sampler_seed=seed,
|
||||
guidance_scale=9.0,
|
||||
num_inference_steps=2,
|
||||
output_type="np",
|
||||
height=512,
|
||||
width=512,
|
||||
).images
|
||||
assert images1.shape == (1, 512, 512, 3)
|
||||
assert images2.shape == (1, 512, 512, 3)
|
||||
assert np.abs(images1.flatten() - images2.flatten()).max() < 1e-2
|
||||
Reference in New Issue
Block a user